Identification, Equivalent Models, and Computer Algebra provides information pertinent to computer algebra. This book presents a brief discussion of the commutation matrix, an operator that plays a role when derivatives have to be evaluated involving symmetric matrices. Organized into eight chapters, this book begins with an overview of the link between identification of a parameter and the existence of a consistent estimator, and the link between identification of a model and the rank of a Jacobian matrix. This text then describes an algorithm for the determination of the exact rank of a parametrized matrix. Other chapters consider the identification in the simultaneous equation model. This book discusses as well the identification assessment in confirmatory factor analysis, a problem related to the simultaneous equations model. The final chapter deals with various computer programs that the enclosed diskette contains. This book is a valuable resource for readers who are interested in computer algebra.
Sponsored by the American Educational Research Association's Special Interest Group for Educational Statisticians This volume is the second edition of Hancock and Mueller’s highly-successful 2006 volume, with all of the original chapters updated as well as four new chapters. The second edition, like the first, is intended to serve as a didactically-oriented resource for graduate students and research professionals, covering a broad range of advanced topics often not discussed in introductory courses on structural equation modeling (SEM). Such topics are important in furthering the understanding of foundations and assumptions underlying SEM as well as in exploring SEM, as a potential tool to address new types of research questions that might not have arisen during a first course. Chapters focus on the clear explanation and application of topics, rather than on analytical derivations, and contain materials from popular SEM software.
A Companion to Theoretical Econometrics provides a comprehensive reference to the basics of econometrics. This companion focuses on the foundations of the field and at the same time integrates popular topics often encountered by practitioners. The chapters are written by international experts and provide up-to-date research in areas not usually covered by standard econometric texts. Focuses on the foundations of econometrics. Integrates real-world topics encountered by professionals and practitioners. Draws on up-to-date research in areas not covered by standard econometrics texts. Organized to provide clear, accessible information and point to further readings.
This book reviews the statistical procedures used to detect measurement bias. Measurement bias is examined from a general latent variable perspective so as to accommodate different forms of testing in a variety of contexts including cognitive or clinical variables, attitudes, personality dimensions, or emotional states. Measurement models that underlie psychometric practice are described, including their strengths and limitations. Practical strategies and examples for dealing with bias detection are provided throughout. The book begins with an introduction to the general topic, followed by a review of the measurement models used in psychometric theory. Emphasis is placed on latent variable models, with introductions to classical test theory, factor analysis, and item response theory, and the controversies associated with each, being provided. Measurement invariance and bias in the context of multiple populations is defined in chapter 3 followed by chapter 4 that describes the common factor model for continuous measures in multiple populations and its use in the investigation of factorial invariance. Identification problems in confirmatory factor analysis are examined along with estimation and fit evaluation and an example using WAIS-R data. The factor analysis model for discrete measures in multiple populations with an emphasis on the specification, identification, estimation, and fit evaluation issues is addressed in the next chapter. An MMPI item data example is provided. Chapter 6 reviews both dichotomous and polytomous item response scales emphasizing estimation methods and model fit evaluation. The use of models in item response theory in evaluating invariance across multiple populations is then described, including an example that uses data from a large-scale achievement test. Chapter 8 examines item bias evaluation methods that use observed scores to match individuals and provides an example that applies item response theory to data introduced earlier in the book. The book concludes with the implications of measurement bias for the use of tests in prediction in educational or employment settings. A valuable supplement for advanced courses on psychometrics, testing, measurement, assessment, latent variable modeling, and/or quantitative methods taught in departments of psychology and education, researchers faced with considering bias in measurement will also value this book.
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi
Click ′Additional Materials′ for downloadable samples "The 24 chapters in this Handbook span a wide range of topics, presenting the latest quantitative developments in scaling theory, measurement, categorical data analysis, multilevel models, latent variable models, and foundational issues. Each chapter reviews the historical context for the topic and then describes current work, including illustrative examples where appropriate. The level of presentation throughout the book is detailed enough to convey genuine understanding without overwhelming the reader with technical material. Ample references are given for readers who wish to pursue topics in more detail. The book will appeal to both researchers who wish to update their knowledge of specific quantitative methods, and students who wish to have an integrated survey of state-of- the-art quantitative methods." —Roger E. Millsap, Arizona State University "This handbook discusses important methodological tools and topics in quantitative methodology in easy to understand language. It is an exhaustive review of past and recent advances in each topic combined with a detailed discussion of examples and graphical illustrations. It will be an essential reference for social science researchers as an introduction to methods and quantitative concepts of great use." —Irini Moustaki, London School of Economics, U.K. "David Kaplan and SAGE Publications are to be congratulated on the development of a new handbook on quantitative methods for the social sciences. The Handbook is more than a set of methodologies, it is a journey. This methodological journey allows the reader to experience scaling, tests and measurement, and statistical methodologies applied to categorical, multilevel, and latent variables. The journey concludes with a number of philosophical issues of interest to researchers in the social sciences. The new Handbook is a must purchase." —Neil H. Timm, University of Pittsburgh The SAGE Handbook of Quantitative Methodology for the Social Sciences is the definitive reference for teachers, students, and researchers of quantitative methods in the social sciences, as it provides a comprehensive overview of the major techniques used in the field. The contributors, top methodologists and researchers, have written about their areas of expertise in ways that convey the utility of their respective techniques, but, where appropriate, they also offer a fair critique of these techniques. Relevance to real-world problems in the social sciences is an essential ingredient of each chapter and makes this an invaluable resource. The handbook is divided into six sections: • Scaling • Testing and Measurement • Models for Categorical Data • Models for Multilevel Data • Models for Latent Variables • Foundational Issues These sections, comprising twenty-four chapters, address topics in scaling and measurement, advances in statistical modeling methodologies, and broad philosophical themes and foundational issues that transcend many of the quantitative methodologies covered in the book. The Handbook is indispensable to the teaching, study, and research of quantitative methods and will enable readers to develop a level of understanding of statistical techniques commensurate with the most recent, state-of-the-art, theoretical developments in the field. It provides the foundations for quantitative research, with cutting-edge insights on the effectiveness of each method, depending on the data and distinct research situation.
This book introduces multiple-latent variable models by utilizing path diagrams to explain the underlying relationships in the models. This approach helps less mathematically inclined students grasp the underlying relationships between path analysis, factor analysis, and structural equation modeling more easily. A few sections of the book make use of elementary matrix algebra. An appendix on the topic is provided for those who need a review. The author maintains an informal style so as to increase the book's accessibility. Notes at the end of each chapter provide some of the more technical details. The book is not tied to a particular computer program, but special attention is paid to LISREL, EQS, AMOS, and Mx. New in the fourth edition of Latent Variable Models: *a data CD that features the correlation and covariance matrices used in the exercises; *new sections on missing data, non-normality, mediation, factorial invariance, and automating the construction of path diagrams; and *reorganization of chapters 3-7 to enhance the flow of the book and its flexibility for teaching. Intended for advanced students and researchers in the areas of social, educational, clinical, industrial, consumer, personality, and developmental psychology, sociology, political science, and marketing, some prior familiarity with correlation and regression is helpful.
Developmental systems theory provides powerful tools for predicting complex, dynamic interactions among biological and environmental processes in human behavior and health. This groundbreaking handbook provides a roadmap for integrating key concepts of developmental systems theory (such as self-organization, reciprocal dynamic interaction, and probabilistic epigenesis) and simulation models (connectionist and agent-based models) with advanced dynamic modeling approaches for testing these theories and models. Internationally renowned developmental science scholars present innovations in research design, measurement, and analysis that offer new means of generating evidence-based decisions to optimize the course of health and positive functioning across the life span. Topics include epigenetic development and evolution; the relationship between neural systems growth and psychological development; the role of family environments in shaping children's cognitive skills and associated adult outcomes, and more.
This book integrates different perspectives on MTMM data analysis; weighing the benefits and drawbacks of one approach relative to others. This contrasts with most MTMM texts, which present the merits of one approach. Brings together "current best practice" on MTMM into a single authoritative reference. General courses on structural modeling have become core courses in most graduate departments of psychology, and structural modeling is becoming ever more important for the field. This book would therefore address an important, and growing, need for more cutting-edge material in a field growing in size and importance. Global appeal - lead US author, connections to the European EAM organization, and contributors from multiple countries. Due to the nature of the content in the book will also travel well.
By looking at the processes of change over time - by carrying out longitudinal studies - researchers answer questions about learning, development, educational growth, social change and medical outcomes. However, longitudinal research has many faces. This book examines all the main approaches as well as newer developments (such as structural equation modelling, multilevel modelling and optimal scaling) to enable the reader to gain a thorough understanding of the approach and make appropriate decisions about which technique can be applied to the research problem. Conceptual explanations are used to keep technical terms to a minimum; examples are provided for each approach; issues of design, measurement and significance are considered; and a standard notation is used throughout.