Iterative Identification and Control

Iterative Identification and Control

Author: P. Albertos Pérez

Publisher: Springer Science & Business Media

Published: 2002-05-21

Total Pages: 332

ISBN-13: 9781852335090

DOWNLOAD EBOOK

An exposition of the interplay between the modelling of dynamic systems and the design of feedback controllers based on these models. The authors of individual chapters are some of the most renowned and authoritative figures in the fields of system identification and control design.


Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics

Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics

Author: Jing Na

Publisher: Academic Press

Published: 2018-06-12

Total Pages: 338

ISBN-13: 0128136847

DOWNLOAD EBOOK

Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics reports some of the latest research on modeling, identification and adaptive control for systems with nonsmooth dynamics (e.g., backlash, dead zone, friction, saturation, etc). The authors present recent research results for the modelling and control designs of uncertain systems with nonsmooth dynamics, such as friction, dead-zone, saturation and hysteresis, etc., with particular applications in servo systems. The book is organized into 19 chapters, distributed in five parts concerning the four types of nonsmooth characteristics, namely friction, dead-zone, saturation and hysteresis, respectively. Practical experiments are also included to validate and exemplify the proposed approaches. This valuable resource can help both researchers and practitioners to learn and understand nonlinear adaptive control designs. Academics, engineers and graduate students in the fields of electrical engineering, control systems, mechanical engineering, applied mathematics and computer science can benefit from the book. It can be also used as a reference book on adaptive control for servo systems for students with some background in control engineering. - Explains the latest research outputs on modeling, identification and adaptive control for systems with nonsmooth dynamics - Provides practical application and experimental results for robotic systems, and servo motors


Multivariable System Identification For Process Control

Multivariable System Identification For Process Control

Author: Y. Zhu

Publisher: Elsevier

Published: 2001-10-08

Total Pages: 373

ISBN-13: 0080537111

DOWNLOAD EBOOK

Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited.The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.


Industrial Process Identification and Control Design

Industrial Process Identification and Control Design

Author: Tao Liu

Publisher: Springer Science & Business Media

Published: 2011-11-16

Total Pages: 487

ISBN-13: 0857299778

DOWNLOAD EBOOK

Industrial Process Identification and Control Design is devoted to advanced identification and control methods for the operation of continuous-time processes both with and without time delay, in industrial and chemical engineering practice. The simple and practical step- or relay-feedback test is employed when applying the proposed identification techniques, which are classified in terms of common industrial process type: open-loop stable; integrating; and unstable, respectively. Correspondingly, control system design and tuning models that follow are presented for single-input-single-output processes. Furthermore, new two-degree-of-freedom control strategies and cascade control system design methods are explored with reference to independently-improving, set-point tracking and load disturbance rejection. Decoupling, multi-loop, and decentralized control techniques for the operation of multiple-input-multiple-output processes are also detailed. Perfect tracking of a desire output trajectory is realized using iterative learning control in uncertain industrial batch processes. All the proposed methods are presented in an easy-to-follow style, illustrated by examples and practical applications. This book will be valuable for researchers in system identification and control theory, and will also be of interest to graduate control students from process, chemical, and electrical engineering backgrounds and to practising control engineers in the process industry.


Identification and Control Using Volterra Models

Identification and Control Using Volterra Models

Author: F.J.III Doyle

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 319

ISBN-13: 1447101073

DOWNLOAD EBOOK

This book covers recent results in the analysis, identification and control of systems described by Volterra models. Topics covered include: qualitative behavior of finite Volterra models compared and contrasted with other nonlinear model classes, structural restrictions and extensions to Volterra model class, least squares and stochastic identification approaches, model inversion issues, and direct synthesis and model predictive control design, guidelines for practical applications. Examples are drawn from Chemical, Biological and Electrical Engineering. The book is suitable as a text for a graduate control course, or as a reference for both research and practice.


Nonlinear Identification and Control

Nonlinear Identification and Control

Author: G.P. Liu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 224

ISBN-13: 1447103459

DOWNLOAD EBOOK

The purpose of this monograph is to give the broad aspects of nonlinear identification and control using neural networks. It uses a number of simulated and industrial examples throughout, to demonstrate the operation of nonlinear identification and control techniques using neural networks.


Modeling, Identification and Control of Robots

Modeling, Identification and Control of Robots

Author: W. Khalil

Publisher: Butterworth-Heinemann

Published: 2004-07-01

Total Pages: 503

ISBN-13: 0080536611

DOWNLOAD EBOOK

Written by two of Europe's leading robotics experts, this book provides the tools for a unified approach to the modelling of robotic manipulators, whatever their mechanical structure. No other publication covers the three fundamental issues of robotics: modelling, identification and control. It covers the development of various mathematical models required for the control and simulation of robots.·World class authority·Unique range of coverage not available in any other book·Provides a complete course on robotic control at an undergraduate and graduate level


Identification and Control of Mechanical Systems

Identification and Control of Mechanical Systems

Author: Jer-Nan Juang

Publisher: Cambridge University Press

Published: 2006-11-23

Total Pages: 0

ISBN-13: 9780521031905

DOWNLOAD EBOOK

The control of vibrating systems is a significant issue in the design of aircraft, spacecraft, bridges, and high-rise buildings. This book discusses the control of vibrating systems, integrating structural dynamics, vibration analysis, modern control, and system identification. By integrating these subjects engineers will need only one book, rather than several texts or courses, to solve vibration control problems. The authors cover key developments in aerospace control and identification theory, including virtual passive control, observer and state-space identification, and data-based controller synthesis. They address many practical issues and applications, and show examples of how various methods are applied to real systems. Some methods show the close integration of system identification and control theory from the state-space perspective, rather than from the traditional input-output model perspective of adaptive control. This text will be useful for advanced undergraduate and beginning graduate students in aerospace, mechanical, and civil engineering, as well as for practicing engineers.


Advanced Process Identification and Control

Advanced Process Identification and Control

Author: Enso Ikonen

Publisher: CRC Press

Published: 2001-10-02

Total Pages: 336

ISBN-13: 9780824706487

DOWNLOAD EBOOK

A presentation of techniques in advanced process modelling, identification, prediction, and parameter estimation for the implementation and analysis of industrial systems. The authors cover applications for the identification of linear and non-linear systems, the design of generalized predictive controllers (GPCs), and the control of multivariable systems.


Modeling, Identification and Control Methods in Renewable Energy Systems

Modeling, Identification and Control Methods in Renewable Energy Systems

Author: Nabil Derbel

Publisher: Springer

Published: 2018-12-24

Total Pages: 374

ISBN-13: 9811319456

DOWNLOAD EBOOK

Most of the research and experiments in the fields of modeling and control systems have spent significant efforts to find rules from various complicated phenomena by principles, observations, measured data, logic derivations. The rules are normally summarized as concise and quantitative expressions or “models”. “Identification” provides mechanisms to establish the models and “control” provides mechanisms to improve system performances. This book reflects the relevant studies and applications in the area of renewable energies, with the latest research from interdisciplinary theoretical studies, computational algorithm development to exemplary applications. It discusses how modeling and control methods such as recurrent neural network, Pitch Angle Control, Fuzzy control, Sliding Mode Control and others are used in renewable systems. It covers topics as photovoltaic systems, wind turbines, maximum power point tracking, batteries for renewable energies, solar energy, thermal energy and so on. This book is edited and written by leading experts in the field and offers an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, control system and energy.