Hyperspectral Data Compression

Hyperspectral Data Compression

Author: Giovanni Motta

Publisher: Springer Science & Business Media

Published: 2006-06-03

Total Pages: 422

ISBN-13: 0387286004

DOWNLOAD EBOOK

Hyperspectral Data Compression provides a survey of recent results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. Chapter 1 addresses compression architecture, and reviews and compares compression methods. Chapters 2 through 4 focus on lossless compression (where the decompressed image must be bit for bit identical to the original). Chapter 5, contributed by the editors, describes a lossless algorithm based on vector quantization with extensions to near lossless and possibly lossy compression for efficient browning and pure pixel classification. Chapter 6 deals with near lossless compression while. Chapter 7 considers lossy techniques constrained by almost perfect classification. Chapters 8 through 12 address lossy compression of hyperspectral imagery, where there is a tradeoff between compression achieved and the quality of the decompressed image. Chapter 13 examines artifacts that can arise from lossy compression.


Satellite Data Compression

Satellite Data Compression

Author: Bormin Huang

Publisher: Springer Science & Business Media

Published: 2011-11-25

Total Pages: 312

ISBN-13: 1461411831

DOWNLOAD EBOOK

Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-based, lookup-table-based, transform-based, clustering-based, and projection-based approaches. This book provides valuable information on state-of-the-art satellite data compression technologies for professionals and students who are interested in this topic. Satellite Data Compression is designed for a professional audience comprised of computer scientists working in satellite communications, sensor system design, remote sensing, data receiving, airborne imaging and geographical information systems (GIS). Advanced-level students and academic researchers will also benefit from this book.


Optical Compressive Imaging

Optical Compressive Imaging

Author: Adrian Stern

Publisher: CRC Press

Published: 2016-11-17

Total Pages: 316

ISBN-13: 1315354276

DOWNLOAD EBOOK

This dedicated overview of optical compressive imaging addresses implementation aspects of the revolutionary theory of compressive sensing (CS) in the field of optical imaging and sensing. It overviews the technological opportunities and challenges involved in optical design and implementation, from basic theory to optical architectures and systems for compressive imaging in various spectral regimes, spectral and hyperspectral imaging, polarimetric sensing, three-dimensional imaging, super-resolution imaging, lens-free, on-chip microscopy, and phase sensing and retrieval. The reader will gain a complete introduction to theory, experiment, and practical use for reducing hardware, shortening image scanning time, and improving image resolution as well as other performance parameters. Optics practitioners and optical system designers, electrical and optical engineers, mathematicians, and signal processing professionals will all find the book a unique trove of information and practical guidance. Delivers the first book on compressed sensing dealing with system development for a wide variety of optical imaging and sensing applications. Covers the fundamentals of CS theory, including noise and algorithms, as well as basic design approaches for data acquisition in optics. Addresses the challenges of implementing compressed sensing theory in the context of different optical imaging designs, from 3D imaging to tomography and microscopy. Provides an essential resource for the design of new and improved devices with improved image quality and shorter acquisition times. Adrian Stern, PhD, is associate professor and head of the Electro-Optical Engineering Unit at Ben-Gurion University of the Negev, Israel. He is an elected Fellow of SPIE.


Hyperspectral Image Processing

Hyperspectral Image Processing

Author: Liguo Wang

Publisher: Springer

Published: 2015-07-15

Total Pages: 327

ISBN-13: 3662474565

DOWNLOAD EBOOK

Based on the authors’ research, this book introduces the main processing techniques in hyperspectral imaging. In this context, SVM-based classification, distance comparison-based endmember extraction, SVM-based spectral unmixing, spatial attraction model-based sub-pixel mapping and MAP/POCS-based super-resolution reconstruction are discussed in depth. Readers will gain a comprehensive understanding of these cutting-edge hyperspectral imaging techniques. Researchers and graduate students in fields such as remote sensing, surveying and mapping, geosciences and information systems will benefit from this valuable resource.


Hyperspectral Image Analysis

Hyperspectral Image Analysis

Author: Saurabh Prasad

Publisher: Springer Nature

Published: 2020-04-27

Total Pages: 464

ISBN-13: 3030386171

DOWNLOAD EBOOK

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.


Hyperspectral Data Processing

Hyperspectral Data Processing

Author: Chein-I Chang

Publisher: John Wiley & Sons

Published: 2013-02-01

Total Pages: 1180

ISBN-13: 1118269772

DOWNLOAD EBOOK

Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap. Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections: Part I: provides fundamentals of hyperspectral data processing Part II: offers various algorithm designs for endmember extraction Part III: derives theory for supervised linear spectral mixture analysis Part IV: designs unsupervised methods for hyperspectral image analysis Part V: explores new concepts on hyperspectral information compression Parts VI & VII: develops techniques for hyperspectral signal coding and characterization Part VIII: presents applications in multispectral imaging and magnetic resonance imaging Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages. Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.


Hyperspectral Remote Sensing

Hyperspectral Remote Sensing

Author: Prem Chandra Pandey

Publisher: Elsevier

Published: 2020-08-05

Total Pages: 508

ISBN-13: 0081028954

DOWNLOAD EBOOK

Hyperspectral Remote Sensing: Theory and Applications offers the latest information on the techniques, advances and wide-ranging applications of hyperspectral remote sensing, such as forestry, agriculture, water resources, soil and geology, among others. The book also presents hyperspectral data integration with other sources, such as LiDAR, Multi-spectral data, and other remote sensing techniques. Researchers who use this resource will be able to understand and implement the technology and data in their respective fields. As such, it is a valuable reference for researchers and data analysts in remote sensing and Earth Observation fields and those in ecology, agriculture, hydrology and geology. - Includes the theory of hyperspectral remote sensing, along with techniques and applications across a variety of disciplines - Presents the processing, methods and techniques utilized for hyperspectral remote sensing and in-situ data collection - Provides an overview of the state-of-the-art, including algorithms, techniques and case studies


Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing

Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing

Author: Ni-Bin Chang

Publisher: CRC Press

Published: 2018-02-21

Total Pages: 627

ISBN-13: 1351650637

DOWNLOAD EBOOK

In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.