Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy

Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy

Author: Peder Larson

Publisher: Academic Press

Published: 2021-11-28

Total Pages: 298

ISBN-13: 0128222700

DOWNLOAD EBOOK

MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It's primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. - Presents the physics and hardware of dissolution dynamic nuclear polarization - Explains the behaviour of hyperpolarized carbon-13 agents and how to image them - Detailed guidance on experimental design and data interpretation - Identifies promising and potential applications of hyperpolarized carbon-13 MR


Imaging of Traumatic Brain Injury

Imaging of Traumatic Brain Injury

Author: Yoshimi Anzai

Publisher: Thieme

Published: 2015-03-11

Total Pages: 519

ISBN-13: 1604067292

DOWNLOAD EBOOK

An image-rich text on neuroimaging of trauma patients Imaging of Traumatic Brain Injury is a radiological reference that covers all aspects of neurotrauma imaging and provides a clinical overview of traumatic brain injury (TBI). It describes the imaging features of acute head trauma, the pathophysiology of TBI, and the application of advanced imaging technology to brain-injured patients. Key Features: Covers acute as well as chronic traumatic brain injury Written in an easily accessible format, with pearls and summary boxes at the end of each chapter Includes state-of-the-art imaging techniques, including the multiplanar format, the utility of multiplanar reformats, perfusion imaging, susceptibility weighted imaging, and advanced MRI techniques Contains over 250 high-quality images This book will serve as a practical reference for practicing radiologists as well as radiology residents and fellows, neurosurgeons, trauma surgeons, and emergency physicians.


Methodologies for Metabolomics

Methodologies for Metabolomics

Author: Norbert W. Lutz

Publisher: Cambridge University Press

Published: 2013-01-21

Total Pages: 641

ISBN-13: 0521765900

DOWNLOAD EBOOK

Metabolomics, the global characterisation of the small molecule complement involved in metabolism, has evolved into a powerful suite of approaches for understanding the global physiological and pathological processes occurring in biological organisms. The diversity of metabolites, the wide range of metabolic pathways and their divergent biological contexts require a range of methodological strategies and techniques. Methodologies for Metabolomics provides a comprehensive description of the newest methodological approaches in metabolomic research. The most important technologies used to identify and quantify metabolites, including nuclear magnetic resonance and mass spectrometry, are highlighted. The integration of these techniques with classical biological methods is also addressed. Furthermore, the book presents statistical and chemometric methods for evaluation of the resultant data. The broad spectrum of topics includes a vast variety of organisms, samples and diseases, ranging from in vivo metabolomics in humans and animals to in vitro analysis of tissue samples, cultured cells and biofluids.


Glioma Imaging

Glioma Imaging

Author: Whitney B. Pope

Publisher: Springer Nature

Published: 2019-11-11

Total Pages: 289

ISBN-13: 3030273598

DOWNLOAD EBOOK

This book covers physiologic, metabolic and molecular imaging for gliomas. Gliomas are the most common primary brain tumors. Imaging is critical for glioma management because of its ability to noninvasively define the anatomic location and extent of disease. While conventional MRI is used to guide current treatments, multiple studies suggest molecular features of gliomas may be identified with noninvasive imaging, including physiologic MRI and amino acid positron emission tomography (PET). These advanced imaging techniques have the promise to help elucidate underlying tumor biology and provide important information that could be integrated into routine clinical practice. The text outlines current clinical practice including common scenarios in which imaging interpretation impacts patient management. Gaps in knowledge and potential areas of advancement based on the application of more experimental imaging techniques will be discussed. In reviewing this book, readers will learn: current standard imaging methodologies used in clinical practice for patients undergoing treatment for glioma and the implications of emerging treatment modalities including immunotherapy the theoretical basis for advanced imaging techniques including diffusion and perfusion MRI, MR spectroscopy, CEST and amino acid PET the relationship between imaging and molecular/genomic glioma features incorporated in the WHO 2016 classification update and the potential application of machine learning about the recently adopted and FDA approved standard brain tumor protocol for multicenter drug trials of the gaps in knowledge that impede optimal patient management and the cutting edge imaging techniques that could address these deficits


In Vivo NMR Spectroscopy

In Vivo NMR Spectroscopy

Author: Robin A. de Graaf

Publisher: John Wiley & Sons

Published: 2019-03-11

Total Pages: 584

ISBN-13: 1119382548

DOWNLOAD EBOOK

Presents basic concepts, experimental methodology and data acquisition, and processing standards of in vivo NMR spectroscopy This book covers, in detail, the technical and biophysical aspects of in vivo NMR techniques and includes novel developments in the field such as hyperpolarized NMR, dynamic 13C NMR, automated shimming, and parallel acquisitions. Most of the techniques are described from an educational point of view, yet it still retains the practical aspects appreciated by experimental NMR spectroscopists. In addition, each chapter concludes with a number of exercises designed to review, and often extend, the presented NMR principles and techniques. The third edition of In Vivo NMR Spectroscopy: Principles and Techniques has been updated to include experimental detail on the developing area of hyperpolarization; a description of the semi-LASER sequence, which is now a method of choice; updated chemical shift data, including the addition of 31P data; a troubleshooting section on common problems related to shimming, water suppression, and quantification; recent developments in data acquisition and processing standards; and MatLab scripts on the accompanying website for helping readers calculate radiofrequency pulses. Provide an educational explanation and overview of in vivo NMR, while maintaining the practical aspects appreciated by experimental NMR spectroscopists Features more experimental methodology than the previous edition End-of-chapter exercises that help drive home the principles and techniques and offer a more in-depth exploration of quantitative MR equations Designed to be used in conjunction with a teaching course on the subject In Vivo NMR Spectroscopy: Principles and Techniques, 3rd Edition is aimed at all those involved in fundamental and/or diagnostic in vivo NMR, ranging from people working in dedicated in vivo NMR institutes, to radiologists in hospitals, researchers in high-resolution NMR and MRI, and in areas such as neurology, physiology, chemistry, and medical biology.


Compact NMR

Compact NMR

Author: Bernhard Blümich

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-08-22

Total Pages: 305

ISBN-13: 3110374587

DOWNLOAD EBOOK

The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting magnets are employed which magnetize atomic nuclei of an object positioned inside the magnet. Their circulating motion is interrogated by radio-frequency waves. Depending on the operating mode, the frequency spectrum provides the chemist with molecular information, the medical doctor with anatomic images, while the materials scientist is interested in NMR relaxation parameters, which scale with material properties and determine the contrast in magnetic resonance images. Recent advances in magnet technology led to a variety of small permanent magnets, by which NMR spectra, images, and relaxation parameters can be measured with mobile and low-cost instruments.


Dynamic Hyperpolarized Nuclear Magnetic Resonance

Dynamic Hyperpolarized Nuclear Magnetic Resonance

Author: Thomas Jue

Publisher: Springer Nature

Published: 2021-05-21

Total Pages: 279

ISBN-13: 3030550435

DOWNLOAD EBOOK

This is the first book in the series to focus on dynamic hyperpolarized nuclear magnetic resonance, a burgeoning topic in biophysics. The volume follows the format and style of the Handbook of Modern Biophysics series and expands on topics already discussed in previous volumes. It builds a theoretical and experimental framework for students and researchers who wish to investigate the biophysics and biomedical application of dynamic hyperpolarized NMR. All contributors are internationally recognized experts, lead the dynamic hyperpolarized NMR field, and have first-hand knowledge of the chapter material. The book covers the following topics: Hyperpolarization by dissolution Dynamic Nuclear Polarization Design considerations for implementing a hyperpolarizer Chemical Shift Imaging with Dynamic Hyperpolarized NMR Signal Sampling Strategies in Dynamic Hyperpolarized NMR Kinetic Modeling of Enzymatic Reactions in Analyzing Hyperpolarized NMR Data Using Hyperpolarized NMR to Understand Biochemistry from Cells to Humans Innovating Metabolic Biomarkers for Hyperpolarized NMR New Insights into Metabolic Regulation from Hyperpolarized 13C MRS/MRI Studies Novel Views on Heart Function from Dynamic Hyperpolarized NMR Insights on Lactate Metabolism in Skeletal Muscle based on 13C Dynamic Nuclear Polarization Studies About the Editors Dirk Mayer is Professor of Diagnostic Radiology and Nuclear Medicine at the University of Maryland and is the Director of Metabolic Imaging. He is a recognized expert on dynamic nuclear polarization (DNP) MRI-based imaging techniques and has optimized acquisition and reconstruction techniques, has constructed kinetic modeling for quantitative analysis, and has developing new probes. Thomas Jue is Professor of Biochemistry and Molecular Medicine at the University of California Davis. He is an internationally recognized expert in developing and applying magnetic resonance techniques to study animal as well as human physiology in vivo. He served as a Chair of the Biophysics Graduate Group Program at UC Davis, where he started to redesign a graduate curriculum that balances physical science/mathematics formalism and biomedical perspective in order to promote interest at the interface of physical science, engineering, mathematics, biology, and medicine. The Handbook of Modern Biophysics represents an aspect of that effort.


Molecular Imaging

Molecular Imaging

Author: Ralph Weissleder

Publisher: PMPH-USA

Published: 2010

Total Pages: 1384

ISBN-13: 9781607950059

DOWNLOAD EBOOK

The field of molecular imaging of living subjects have evolved considerably and have seen spectacular advances in chemistry, engineering and biomedical applications. This textbook was designed to fill the need for an authoritative source for this multi-disciplinary field. We have been fortunate to recruit over 80 leading authors contributing 75 individual chapters. Given the multidisciplinary nature of the field, the book is broken into six different sections: "Molecular Imaging technologies", "Chemistry", "Molecular Imaging in Cell and Molecular Biology", "Applications of Molecular Imaging", "Molecular Imaging in Drug Evaluation" with the final section comprised of chapters on computation, bioinformatics and modeling. The organization of this large amount of information is logical and strives to avoid redundancies among chapters. It encourages the use of figures to illustrate concepts and to provide numerous molecular imaging examples.


NMR Spectroscopy

NMR Spectroscopy

Author: Harald Günther

Publisher: John Wiley & Sons

Published: 2013-12-13

Total Pages: 842

ISBN-13: 3527674772

DOWNLOAD EBOOK

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.


MRI from Picture to Proton

MRI from Picture to Proton

Author: Donald W. McRobbie

Publisher: Cambridge University Press

Published: 2017-04-13

Total Pages: 405

ISBN-13: 1316688259

DOWNLOAD EBOOK

MR is a powerful modality. At its most advanced, it can be used not just to image anatomy and pathology, but to investigate organ function, to probe in vivo chemistry, and even to visualise the brain thinking. However, clinicians, technologists and scientists struggle with the study of the subject. The result is sometimes an obscurity of understanding, or a dilution of scientific truth, resulting in misconceptions. This is why MRI from Picture to Proton has achieved its reputation for practical clarity. MR is introduced as a tool, with coverage starting from the images, equipment and scanning protocols and traced back towards the underlying physics theory. With new content on quantitative MRI, MR safety, multi-band excitation, Dixon imaging, MR elastography and advanced pulse sequences, and with additional supportive materials available on the book's website, this new edition is completely revised and updated to reflect the best use of modern MR technology.