Current Trends and Future Developments on (Bio-) Membranes

Current Trends and Future Developments on (Bio-) Membranes

Author: Angelo Basile

Publisher: Elsevier

Published: 2020-03-20

Total Pages: 336

ISBN-13: 0128173750

DOWNLOAD EBOOK

Membrane Systems for Hydrogen Production offers an overview of advanced technologies in the field of both catalysts and membrane technologies for hydrogen productions and energy saving. Catalysts play an irreplaceable role in chemical engineering for carrying out reaction at industrial level. Membrane processes are today well-recognized technologies in many fields, such as water and wastewater treatment, gas separation and purification, etc. This book relates these two fields and their role in electrochemical hydrogen production by presenting 5 specific chapters where the catalysts are compared to the membrane technology. The purpose of this book is to provide an overview on recently developed catalysts which work in combination with membrane operations for energy savings. This combination provides an example of strategies for engineering development and process intensification of interest for both industrial and developing countries. - Provides an overview of the interconnections between membrane technology and catalysts related to the electrochemical hydrogen production - Provides a comprehensive review of advanced research on the catalysts used in electrochemical processes and the use of related membrane processes - Addresses the key issues to introduce considerable process intensification in the hydrogen production


Water for Energy and Fuel Production

Water for Energy and Fuel Production

Author: Yatish T. Shah

Publisher: CRC Press

Published: 2014-05-16

Total Pages: 440

ISBN-13: 1482216191

DOWNLOAD EBOOK

This text describes water's use in the production of raw fuels, as an energy carrier (e.g., hot water and steam), and as a reactant, reaction medium, and catalyst for the conversion of raw fuels to synthetic fuels. It explains how supercritical water is used to convert fossil- and bio-based feedstock to synthetic fuels in the presence and absence of a catalyst. It also explores water as a direct source of energy and fuel, such as hydrogen from water dissociation, methane from water-based clathrate molecules, and more.


Inorganic Membrane Reactors

Inorganic Membrane Reactors

Author: Xiaoyao Tan

Publisher: John Wiley & Sons

Published: 2015-03-02

Total Pages: 304

ISBN-13: 1118672550

DOWNLOAD EBOOK

Membrane reactors combine membrane functions such as separation, reactant distribution, and catalyst support with chemical reactions in a single unit. The benefits of this approach include enhanced conversion, increased yield, and selectivity, as well as a more compact and cost-effect design of reactor system. Hence, membrane reactors are an effective route toward chemical process intensification. This book covers all types of porous membrane reactors, including ceramic, silica, carbon, zeolite, and dense metallic reactors such as Pd or Pd-alloy, oxygen ion-conducting, and proton-conducting ceramics. For each type of membrane reactor, the membrane transport principles, membrane fabrication, configuration and operation of membrane reactors, and their current and potential applications are described comprehensively. A summary of the critical issues and hurdles for each membrane reaction process is also provided, with the aim of encouraging successful commercial applications. The audience for Inorganic Membrane Reactors includes advanced students, industrial and academic researchers, and engineers with an interest in membrane reactors.


Modern Applications of High Throughput R&D in Heterogeneous Catalysis

Modern Applications of High Throughput R&D in Heterogeneous Catalysis

Author: Alfred Hagemeyer

Publisher: Bentham Science Publishers

Published: 2014-04-04

Total Pages: 404

ISBN-13: 1608058727

DOWNLOAD EBOOK

This eBook covers the application of high-throughput R&D to both fundamental and applied catalysis including catalyst synthesis, characterization, and testing in various reactor types. Chapters include topics such as applications ranging from optimizations of established industrial catalysts to the discovery of innovative new materials, examples of the development of innovative parallel characterization methods, and cases of real catalyst testing in small scale reactor systems. Readers will also find chapters that cover commodity chemicals produced using continuous gas phase processes as well as fine chemicals produced in liquid phase batch reactors. The potential of industrial chemicals production from biorenewable feedstocks is also presented. The steadily improving high throughput workflows are today being applied to relevant reactions and targets such as hydrotreating, Deacon oxidation, Fischer-Tropsch, propane dehydrogenation, C4 oxidation, methane coupling, exhaust gas catalysis, bio-based Nylon, fuel cells and vitamins. The topics presented in this eBook have been contributed by researchers from academia as well as industry, making this eBook a well-balanced reference, which could be of particular interest to professional, industrial or service R&D labs.


Chemical Energy from Natural and Synthetic Gas

Chemical Energy from Natural and Synthetic Gas

Author: Yatish T. Shah

Publisher: CRC Press

Published: 2017-03-16

Total Pages: 848

ISBN-13: 1315302330

DOWNLOAD EBOOK

Commercial development of energy from renewables and nuclear is critical to long-term industry and environmental goals. However, it will take time for them to economically compete with existing fossil fuel energy resources and their infrastructures. Gas fuels play an important role during and beyond this transition away from fossil fuel dominance to a balanced approach to fossil, nuclear, and renewable energies. Chemical Energy from Natural and Synthetic Gas illustrates this point by examining the many roles of natural and synthetic gas in the energy and fuel industry, addressing it as both a "transition" and "end game" fuel. The book describes various types of gaseous fuels and how are they are recovered, purified, and converted to liquid fuels and electricity generation and used for other static and mobile applications. It emphasizes methane, syngas, and hydrogen as fuels, although other volatile hydrocarbons are considered. It also covers storage and transportation infrastructure for natural gas and hydrogen and methods and processes for cleaning and reforming synthetic gas. The book also deals applications, such as the use of natural gas in power production in power plants, engines, turbines, and vehicle needs. Presents a unified and collective look at gas in the energy and fuel industry, addressing it as both a "transition" and "end game" fuel. Emphasizes methane, syngas, and hydrogen as fuels. Covers gas storage and transport infrastructure. Discusses thermal gasification, gas reforming, processing, purification and upgrading. Describes biogas and bio-hydrogen production. Deals with the use of natural gas in power production in power plants, engines, turbines, and vehicle needs.


Supercritical Fluid Technology for Energy and Environmental Applications

Supercritical Fluid Technology for Energy and Environmental Applications

Author: Vladimir Anikeev

Publisher: Newnes

Published: 2013-12-21

Total Pages: 285

ISBN-13: 0444626972

DOWNLOAD EBOOK

Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources — including renewable materials — using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations.A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine-tuned," making them suitable as organic solvents in a range of industrial and laboratory processes.This volume enables readers to select the most appropriate medium for a specific situation. It helps instructors prepare course material for graduate and postgraduate courses in the area of chemistry, chemical engineering, and environmental engineering. And it helps professional engineers learn supercritical fluid-based technologies and use them in solving the increasingly challenging environmental issues. - Relates theory, chemical characteristics, and properties of the particular supercritical fluid to its various applications - Covers the fundamentals of supercritical fluids, like thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations - Includes the most recent applications of supercritical fluids, including energy generation, materials synthesis, and environmental protection


Hydrogen Production Technologies

Hydrogen Production Technologies

Author: Mehmet Sankir

Publisher: John Wiley & Sons

Published: 2017-03-20

Total Pages: 653

ISBN-13: 1119283655

DOWNLOAD EBOOK

Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.


Catalysts Deactivation, Poisoning and Regeneration

Catalysts Deactivation, Poisoning and Regeneration

Author: Luciana Lisi

Publisher: MDPI

Published: 2019-10-01

Total Pages: 254

ISBN-13: 3039215469

DOWNLOAD EBOOK

Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.


Compendium of Hydrogen Energy

Compendium of Hydrogen Energy

Author: Frano Barbir

Publisher: Woodhead Publishing

Published: 2015-09-25

Total Pages: 328

ISBN-13: 1782423850

DOWNLOAD EBOOK

Compendium of Hydrogen Energy: Hydrogen Energy Conversion, Volume Three is the third part of a four volume series and focuses on the methods of converting stored hydrogen into useful energy. The other three volumes focus on hydrogen production and purification; hydrogen storage and transmission; and hydrogen use, safety, and the hydrogen economy, respectively. Many experts believe that, in time, the hydrogen economy will replace the fossil fuel economy as the primary source of energy. Once hydrogen has been produced and stored, it can then be converted via fuel cells or internal combustion engines into useful energy. This volume highlights how different fuel cells and hydrogen-fueled combustion engines and turbines work. The first part of the volume investigates various types of hydrogen fuel cells, including solid oxide, molten carbonate, and proton exchange membrane. The second part looks at hydrogen combustion energy, and the final section explores the use of metal hydrides in hydrogen energy conversion. - Highlights how different fuel cells and hydrogen-fueled combustion engines and turbines work - Features input written by leading academics in the field of sustainable energy and experts from the world of industry - Examines various types of hydrogen fuel cells, including solid oxide, molten carbonate, and proton exchange membrane - Presents part of a very comprehensive compendium which, across four volumes, looks at the entirety of the hydrogen energy economy