Fundamentals of Hydrogen Embrittlement

Fundamentals of Hydrogen Embrittlement

Author: Michihiko Nagumo

Publisher: Springer

Published: 2016-01-27

Total Pages: 241

ISBN-13: 9811001618

DOWNLOAD EBOOK

This book is the first comprehensive treatment of hydrogen embrittlement of metallic materials, mainly of steels. The subject is increasingly important with regard to recent requirements for hydrogen energy equipment. Recent progress in revealing the nature of hydrogen embrittlement is remarkable, and this book provides students and researchers engaging in hydrogen problems with a comprehensive view of hydrogen embrittlement covering basic behaviors of hydrogen in materials and their various manifestations in degradation of mechanical properties. Previous studies are critically reviewed and recent advances including new ideas on the mechanism of embrittlement are presented. Emphases are put on experimental facts, but their meanings rather than phenomenological appearance are given particular attention. Experiments are noted on adopted conditions since the operating mechanism of hydrogen might differ by materials and environments. For theories, assumptions and premises employed are noted so as to examine their versatility. Because of the interdisciplinary nature of the subject, brief descriptions of fundamental ideas are presented when necessary.


Gaseous Hydrogen Embrittlement of Materials in Energy Technologies

Gaseous Hydrogen Embrittlement of Materials in Energy Technologies

Author: Richard P Gangloff

Publisher: Elsevier

Published: 2012-01-19

Total Pages: 521

ISBN-13: 0857095374

DOWNLOAD EBOOK

Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 2 is divided into three parts, part one looks at the mechanisms of hydrogen interactions with metals including chapters on the adsorption and trap-sensitive diffusion of hydrogen and its impact on deformation and fracture processes. Part two investigates modern methods of modelling hydrogen damage so as to predict material-cracking properties. The book ends with suggested future directions in science and engineering to manage the hydrogen embrittlement of high-performance metals in energy systems.With its distinguished editors and international team of expert contributors, Volume 2 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation. - Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure - Chapters review mechanisms of hydrogen embrittlement including absorption, diffusion and trapping of hydrogen in metals - Analyses ways of modelling hydrogen-induced damage and assessing service life


Advances in Hydrogen Embrittlement Study

Advances in Hydrogen Embrittlement Study

Author: Vladimir A. Polyanskiy

Publisher: Springer Nature

Published: 2021-03-13

Total Pages: 213

ISBN-13: 3030669483

DOWNLOAD EBOOK

The book presents a collection of chapters on the current problems associated with hydrogen damage. It discusses the effect of hydrogen on material properties and its interaction with the material microstructure, physical features of hydrogen transport in metals and alloys, as well as applicable methods of measuring concentration of hydrogen in solid media.


Gaseous Hydrogen Embrittlement of Materials in Energy Technologies

Gaseous Hydrogen Embrittlement of Materials in Energy Technologies

Author: Richard P Gangloff

Publisher: Elsevier

Published: 2012-01-16

Total Pages: 864

ISBN-13: 0857093894

DOWNLOAD EBOOK

Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 1 is divided into three parts, the first of which provides an overview of the hydrogen embrittlement problem in specific technologies including petrochemical refining, automotive hydrogen tanks, nuclear waste disposal and power systems, and H2 storage and distribution facilities. Part two then examines modern methods of characterization and analysis of hydrogen damage and part three focuses on the hydrogen degradation of various alloy classesWith its distinguished editors and international team of expert contributors, Volume 1 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation. - Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure - Reviews how hydrogen embrittlement affects particular sectors such as the petrochemicals, automotive and nuclear industries - Discusses how hydrogen embrittlement can be characterised and its effects on particular alloy classes


Embrittlement of Engineering Alloys

Embrittlement of Engineering Alloys

Author: C. L. Briant

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 638

ISBN-13: 148328865X

DOWNLOAD EBOOK

Treatise on Materials Science and Technology, Volume 25: Embrittlement of Engineering Alloys is an 11-chapter text that describes some situations that produce premature failure of several engineering alloys, including steels and nickel- and aluminum-base alloys. Chapters 1 to 3 consider situations where improper alloy composition, processing, and/or heat treatment can lead to a degradation of mechanical properties, even in the absence of an aggressive environment or an elevated temperature. Chapters 4 and 5 examine the effect of elevated temperatures on the mechanical properties of both ferrous and nonferrous alloys. Chapters 6 and 7 discuss the effects of corrosive environments on both stressed and unstressed materials. In these environments anodic dissolution is the primary step that leads to failure. Chapters 8 to 10 deal with the effects of aggressive environments that lead to enhanced decohesion or embrittlement of the metal, such as hydrogen, liquid metal, and irradiation-induced embrittlement. Chapter 11 looks into the embrittlement phenomena occurring during welding, one of the most common processing conditions to which a material could be subjected. This book will prove useful to materials scientists and researchers.


Hydrogen Effects in Materials

Hydrogen Effects in Materials

Author: Anthony W. Thompson

Publisher: John Wiley & Sons

Published: 2013-09-27

Total Pages: 1090

ISBN-13: 1118803272

DOWNLOAD EBOOK

Proceedings of the Fifth International Conference on the Effect of Hydrogen on the Behavior of Materials sponsored by the Structural Materials Division (SMD) Mechanical Metallurgy and Corrosion & Environmental Effects Committees of The Minerals, Metals & Materials Society held at Jackson Lake Lodge, Moran, Wyoming, September 11-14, 1994.


HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015

HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015

Author: The Chinese Society for Metals

Publisher: Springer

Published: 2017-03-22

Total Pages: 1147

ISBN-13: 3319487671

DOWNLOAD EBOOK

This is a collection of papers presented at the joint conference of the 7th International Conference on High Strength Low Alloy Steels (HSLA Steels 2015), the International Conference on Microalloying 2015 (Microalloying 2015), and the International Conference on Offshore Engineering Steels 2015 (OES 2015). The papers focus on the exchange of the latest scientific and technological progresses on HSLA steels, microalloying steels, and offshore engineering steels over the past decades. The contributions are intended to strengthen cooperation between universities and research institutes, and iron and steel companies and users, and promote the further development in the fields all over the world.