Hydrogen-bonding Research In Photochemistry, Photobiology, And Optoelectronic Materials

Hydrogen-bonding Research In Photochemistry, Photobiology, And Optoelectronic Materials

Author: Han Keli

Publisher: World Scientific

Published: 2019-03-13

Total Pages: 456

ISBN-13: 1786346095

DOWNLOAD EBOOK

As one of the typical intermolecular interactions, hydrogen-bonding plays a significant role in molecular structure and function. When the hydrogen bond research system is connected with the photon, the hydrogen-bonding effect turns to an excited-state one influencing photochemistry, photobiology, and photophysics. Thus, the hydrogen bond in an excited state is a key topic for understanding the excited-state properties, especially for optoelectronic or luminescent materials.The approaches presented in this book include quantum chemical calculation, molecular dynamics simulation and ultrafast spectroscopy, which are strong tools to investigate the hydrogen bond. Unlike other existing titles, this book combines theoretical calculations and experiments to explore the nature of excited-state hydrogen bonds. By using these methods, more details and faster processes involved in excited-state dynamics of hydrogen bond are explored.This highly interdisciplinary book provides an overview of leading hydrogen bond research. It is essential reading for faculties and students in researching photochemistry, photobiology and photophysics, as well as novel optoelectronic materials, fluorescence probes and photocatalysts. It will also guide research beginners to getting a quick start within this field.


Surface Photovoltage Analysis Of Photoactive Materials

Surface Photovoltage Analysis Of Photoactive Materials

Author: Thomas Dittrich

Publisher: World Scientific

Published: 2020-02-04

Total Pages: 318

ISBN-13: 1786347679

DOWNLOAD EBOOK

Surface photovoltage (SPV) techniques provide information about photoactive materials with respect to charge separation in space. This book aims to share experience in measuring and analyzing SPV signals and addresses researchers and developers interested in learning more about and in applying SPV methods. For this purpose, basics about processes in photoactive materials and principles of SPV measurements are combined with examples from research and development over the last two decades.SPV measurements with Kelvin probes, fixed capacitors, electron beams and photoelectrons are explained. Details are given for continuous, modulated and transient SPV spectroscopy. Simulation principles of SPV signals by random walks are introduced and applied for small systems. Application examples are selected for the characterization of silicon surfaces, gallium arsenide layers, electronic states in colloidal quantum dots, transport phenomena in metal oxides and local charge separation across photocatalytic active crystallites.


Hydrogen Bonding and Transfer in the Excited State

Hydrogen Bonding and Transfer in the Excited State

Author: Ke-Li Han

Publisher: John Wiley & Sons

Published: 2011-03-16

Total Pages: 1229

ISBN-13: 1119972922

DOWNLOAD EBOOK

This book gives an extensive description of the state-of-the-art in research on excited-state hydrogen bonding and hydrogen transfer in recent years. Initial chapters present both the experimental and theoretical investigations on the excited-state hydrogen bonding structures and dynamics of many organic and biological chromophores. Following this, several chapters describe the influences of the excited-state hydrogen bonding on various photophysical processes and photochemical reactions, for example: hydrogen bonding effects on fluorescence emission behaviors and photoisomerization; the role of hydrogen bonding in photosynthetic water splitting; photoinduced electron transfer and solvation dynamics in room temperature ionic liquids; and hydrogen bonding barrier crossing dynamics at bio-mimicking surfaces. Finally, the book examines experimental and theoretical studies on the nature and control of excited-state hydrogen transfer in various systems. Hydrogen Bonding and Transfer in the Excited State is an essential overview of this increasingly important field of study, surveying the entire field over 2 volumes, 40 chapters and 1200 pages. It will find a place on the bookshelves of researchers in photochemistry, photobiology, photophysics, physical chemistry and chemical physics.


Hydrogen Bonding in Polymeric Materials

Hydrogen Bonding in Polymeric Materials

Author: Shiao-Wei Kuo

Publisher: John Wiley & Sons

Published: 2018-01-24

Total Pages: 528

ISBN-13: 3527804285

DOWNLOAD EBOOK

Summarizing our current knowledge of the topic, this book describes the roles and effects of hydrogen bonding in polymer materials by reviewing the latest developments over recent years. To this end, it discusses all relevant aspects from the fundamentals, via characterization, to properties and applications in various polymeric materials, including polymer blends, block copolymers, mesoporous materials, biomacromolecules and nanocomposites. Invaluable reading for scientists in polymers and materials as well as those working in macromolecular chemistry.


Hydrogen Bonding and Transfer in the Excited State, 2 Volume Set

Hydrogen Bonding and Transfer in the Excited State, 2 Volume Set

Author: Ke-Li Han

Publisher: Wiley

Published: 2010-12-01

Total Pages: 970

ISBN-13: 9780470666777

DOWNLOAD EBOOK

This book gives an extensive description of the state-of-the-art in research on excited-state hydrogen bonding and hydrogen transfer in recent years. Initial chapters present both the experimental and theoretical investigations on the excited-state hydrogen bonding structures and dynamics of many organic and biological chromophores. Following this, several chapters describe the influences of the excited-state hydrogen bonding on various photophysical processes and photochemical reactions, for example: hydrogen bonding effects on fluorescence emission behaviors and photoisomerization; the role of hydrogen bonding in photosynthetic water splitting; photoinduced electron transfer and solvation dynamics in room temperature ionic liquids; and hydrogen bonding barrier crossing dynamics at bio-mimicking surfaces. Finally, the book examines experimental and theoretical studies on the nature and control of excited-state hydrogen transfer in various systems. Hydrogen Bonding and Transfer in the Excited State is an essential overview of this increasingly important field of study, surveying the entire field over 2 volumes, 40 chapters and 1200 pages. It will find a place on the bookshelves of researchers in photochemistry, photobiology, photophysics, physical chemistry and chemical physics.


Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase

Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase

Author: Thomas Elsaesser

Publisher: Springer

Published: 2010-12-04

Total Pages: 0

ISBN-13: 9789048162062

DOWNLOAD EBOOK

Hydrogen bonds represent type of molecular interaction that determines the structure and function of a large variety of molecular systems. The elementary dynamics of hydrogen bonds and related proton transfer reactions, both occurring in the ultra fast time domain between 10-14 and 10-11s, form a research topic of high current interest. In this book addressing scientists and graduate students in physics, chemistry and biology, the ultra fast dynamics of hydrogen bonds and proton transfer in the condensed phase are reviewed by leading scientists, documenting the state of the art in this exciting field from the viewpoint of theory and experiment. The nonequilibrium behavior of hydrogen-bonded liquids and intramolecular hydrogen bonds as well as photo induced hydrogen and proton transfer are covered in 7 chapters, making reference to the most recent literature.


Hydrogen Bonding and Transfer in the Excited State: Vibrational Dynamics of the Hydrogen Bonds in Nucleic Acid Base Pairs

Hydrogen Bonding and Transfer in the Excited State: Vibrational Dynamics of the Hydrogen Bonds in Nucleic Acid Base Pairs

Author:

Publisher:

Published: 2011

Total Pages: 907

ISBN-13:

DOWNLOAD EBOOK

"This book gives an extensive description of the state-of-the-art in research on excited-state hydrogen bonding and hydrogen transfer in recent years. Initial chapters present both the experimental and theoretical investigations on the excited-state hydrogen bonding structures and dynamics of many organic and biological chromophores. Following this, several chapters describe the influences of the excited-state hydrogen bonding on various photophysical processes and photochemical reactions, for example: hydrogen bonding effects on fluorescence emission behaviors and photoisomerization; the role of hydrogen bonding in photosynthetic water splitting; photoinduced electron transfer and solvation dynamics in room temperature ionic liquids; and hydrogen bonding barrier crossing dynamics at bio-mimicking surfaces. Finally, the book examines experimental and theoretical studies on the nature and control of excited-state hydrogen transfer in various systems. Hydrogen Bonding and Transfer in the Excited State is an essential overview of this increasingly important field of study, surveying the entire field over 2 volumes, 40 chapters and 1200 pages. It will find a place on the bookshelves of researchers in photochemistry, photobiology, photophysics, physical chemistry and chemical physics."--Publisher's description.


The Role of Excited-state Energy Landscapes in Directing Electron and Proton Motion for Light Harvesting Applications

The Role of Excited-state Energy Landscapes in Directing Electron and Proton Motion for Light Harvesting Applications

Author: Emily Jane Rabe

Publisher:

Published: 2020

Total Pages: 182

ISBN-13:

DOWNLOAD EBOOK

To meet the increasing global demand for energy we need to innovate new ways to harness and convert renewable energy sources. Solar energy provides a huge potential to meet these demands, but there is still a plethora of unanswered questions surrounding how photons interact with organic molecules and materials, particularly in the field of photovoltaics and photochemistry. The low dielectric constant of these organic materials causes them to behave differently than their inorganic counterparts. Chapter 2 provides background for the variety of applications of organic optoelectronic materials and common techniques used to study them. In recent years, the aza-aromatic material carbon nitride, and its monomer unit, heptazine, has seen a surge in popularity to mediate photochemical transformations, particularly hydrogen evolution. Yet despite the thousands of publications in this field, there are few fundamental photophysical studies, which are critical to enable new reaction pathways. This work describes a series of photophysical explorations into a molecular heptazine derivative, 2,5,8-tris(4-methoxyphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (TAHz). Chapter 3 provides an overview of the photophysical and electrochemical properties of TAHz, including the unusual inversion of the lowest singlet and triplet state. Chapter 4 provides the first experimental evidence for excited-state proton-coupled electron transfer (ES-PCET) from water to a heptazine chromophore using time-resolved photoluminescence and radical scavenging. This first step of water oxidation opens a new range of possible photochemical reactions to harness solar energy. Chapter 5 proposes design rules for increasing reaction efficiency of ES-PCET with heptazine chromophores by studying reaction rates with a series of phenol derivatives. By adding electron-donating groups on phenol, increased reactivity and support the corollary: adding electron-withdrawing groups to heptazine could increase reaction efficiency with water. Chapter 6 considers another aspect of chromophore design by studying hydrogen bonding and how the local excited-state landscape is modulated by hydrogen-bond strength. Together, this work presents a holistic picture of heptazine0́9s photophysics with implications for tailoring organic chromophores to meet unique photochemical demands.


Nanoscale Compound Semiconductors and their Optoelectronics Applications

Nanoscale Compound Semiconductors and their Optoelectronics Applications

Author: Vijay B. Pawade

Publisher: Woodhead Publishing

Published: 2022-01-21

Total Pages: 461

ISBN-13: 0128240636

DOWNLOAD EBOOK

Nanoscale Compound Semiconductors and their Optoelectronics Applications provides the basic and fundamental properties of nanoscale compound semiconductors and their role in modern technological products. The book discusses all important properties of this important category of materials such as their optical properties, size-dependent properties, and tunable properties. Key methods are reviewed, including synthesis techniques and characterization strategies. The role of compound semiconductors in the advancement of energy efficient optoelectronics and solar cell devices is also discussed. The book also touches on the photocatalytic property of the materials by doping with graphene oxides--an emerging and new pathway. Covers all relevant types of nanoscale compound semiconductors for optoelectronics, including their synthesis, properties and applications Provides historical context and review of emerging trends in semiconductor technology, particularly emphasizing advances in non-toxic semiconductor materials for green technologies Reviews emerging applications of nanoscale compound semiconductor-based devices in optoelectronics, energy and environmental sustainability