The subject of hydrodynamics applied to offshore structures is vast. The topics covered in this book aim to help the reader understand basic principles while at the same time giving the designer enough information for particular designs. Thus, results are given with derivations, and applications are discussed with the aid of examples, with an overview of the advantages and limitations of the method involved. This makes the book suitable as a text for undergraduate and graduate students specializing in offshore and ocean engineering.
This book discusses the subject of wave/current flow around a cylinder, the forces induced on the cylinder by the flow, and the vibration pattern of slender structures in a marine environment.The primary aim of the book is to describe the flow pattern and the resulting load which develops when waves or current meet a cylinder. Attention is paid to the special case of a circular cylinder. The development in the forces is related to the various flow patterns and is discussed in detail. Regular as well as irregular waves are considered, and special cases like wall proximities (pipelines) are also investigated.The book is intended for MSc students with some experience in basic fluid mechanics and for PhD students.
Covers theoretical concepts in offshore mechanics with consideration to new applications, including offshore wind farms, ocean energy devices, aquaculture, floating bridges, and submerged tunnels This comprehensive book covers important aspects of the required analysis and design of offshore structures and systems and the fundamental background material for offshore engineering. Whereas most of the books currently available in the field use traditional oil, gas, and ship industry examples in order to explain the fundamentals in offshore mechanics, this book uses more recent applications, including recent fixed-bottom and floating offshore platforms, ocean energy structures and systems such as wind turbines, wave energy converters, tidal turbines and hybrid marine platforms. Offshore Mechanics covers traditional and more recent methodologies used in offshore structure modelling (including SPH and hydroelasticity models). It also examines numerical techniques, including computational fluid dynamics and finite element method. Additionally, the book features easy-to-understand exercises and examples. Provides a comprehensive treatment for the case of recent applications in offshore mechanics for researchers and engineers Presents the subject of computational fluid dynamics (CFD) and finite element methods (FEM) along with the high fidelity numerical analysis of recent applications in offshore mechanics Offers insight into the philosophy and power of numerical simulations and an understanding of the mathematical nature of the fluid and structural dynamics with focus on offshore mechanic applications Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications is an important book for graduate and senior undergraduate students in offshore engineering and for offshore engineers and researchers in the offshore industry.
Dynamics of Offshore Structures provides an integrated treatment of the main subject areas that contribute to the design, construction, installation, and operation of fixed and floating offshore structures. The book begins with an overview of offshore oil and gas development and offshore structures. Separate chapters follow on the ocean environment; basic fluid mechanics; gravity wave theories; fluid loading on offshore structures; hydrostatics and dynamic response of floating bodies; and model testing of offshore structures. This book is prepared with particular emphasis on the fundamentals of oceanography, basic fluid mechanics, wave theory, hydrodynamics, naval architecture, and structural analysis to meet the needs of students reading ocean engineering or naval architecture, at both undergraduate and postgraduate levels. Basic equations and theoretical results are derived in a rigorous manner but sections on model testing, full-scale measurements, design, and certification are also induced to ensure that the book is of value to professional engineers seeking a balanced treatment of fundamental and practical issues.
This updated translation from the original German edition provides general background information on oceanology and ocean engineering is given, along with descriptions of drilling techniques, offshore structures and hydrocarbon production at sea. The main part of the book is concerned with the hydrostatic and hydrodynamic analysis of marine structures, followed by an evaluation of marine structure reliability. Environmental conditions affecting marine structures, wave statistics, and the application of reliability theory to code development are also discussed. Students and practising engineers who have an interest in the analysis of marine structures will find this book an invaluable reference.
"This book on the Petroleum Resources addresses the challenges of transforming hydrocarbons that exist in underground, to valuable products that can be sold and delivered. It is intended for readers who have a professional or student interest in the petroleum industry, and a basic level of prior knowledge in the technical and commercial aspects of the industry. The goal of the book is to increase the reader's general understanding of key work processes in the "upstream" part of the petroleum industry; that is, the part of the industry that locates underground resources and converts them to valuable products."
Dynamic Analysis of Offshore Structures appraises offshore structures, particularly the major sources of uncertainty in the design process. The book explains the fundamentals of probabilistic processes, the theory or analysis of sea states, and the random-vibration approach to structural response. The text describes the hydrodynamics of water waves, wave forecasting, and the statistical parameters associated with sea-states. The investigator can use Morison's equation to calculate the impact of wave forces acting on slender members such as on lattice-type structures. Or he can employ the diffraction theory to calculate wave forces acting on large-diameter bodies such as concrete gravity-type structures. Other environmental forces he should be concerned with are the effects of currents and winds. The book examines the theory of vibration (including the spectral approach), the theory of vibration on multi-degree-of-freedom structures, matrix analysis of structural response, problems of fatigue, and soil-structure interaction. The book notes the importance of the method of analysis used, with emphasis on the following: dynamic analysis, frequency domain, and linearization of drag. Two types of analysis follow linearization of drag: deterministic analysis (applied in a series of design waves which uses the long-term exceedance diagram for fatigue); or probabilistic analysis (used to study the behavior of the structure during the extreme design storm and its long term behavior for a range of sea states). The book can prove useful for structural, civil, or maritime engineers, as well as for students in one-year courses in offshore structure analysis at the postgraduate or final-year undergraduate level.
This book covers the basics of the hydrodynamics and vibration of structures subjected to environmental loads. It describes the interaction of hydrodynamics with the associated vibration of structures, giving simple explanations. Emphasis is placed on the applications of the theory to practical problems. Several case studies are provided to show how the theory outlined in the book is applied in the design of structures. Background material needed for understanding fluid-induced vibrations of structures is given to make the book reasonably self-sufficient. Examples are taken mainly from the novel structures that are of interest today, including ocean and offshore structures and components.Besides being a text for undergraduates, this book can serve as a handy reference for design engineers and consultants involved in the design of structures subjected to dynamics and vibration.
After introducing the theory of the structural loading on ships and offshore structures based on the motions of wind, waves and currents, this text demonstrates its applications to conventional and non-conventional sea vessels, including extensive exercises and examples.