Energy Systems for Electric and Hybrid Vehicles

Energy Systems for Electric and Hybrid Vehicles

Author: K.T. Chau

Publisher: IET

Published: 2016-08-15

Total Pages: 517

ISBN-13: 1785610082

DOWNLOAD EBOOK

The book provides thorough coverage of energy systems for electric and hybrid vehicles with a focus on the three main energy system technologies - energy sources, battery charging and vehicle-to-grid systems. Energy sources includes electrochemical energy sources, electromechanical energy storage, hybrid energy sources, on-board solar energy harvesting, on-board thermoelectric energy recovery, and battery management. Battery charging technology ranges from the existing charging strategies to the latest wireless charging techniques for park-and-charge and move-and-charge. Vehicle-to-grid technology covers interdisciplinary topics which link electric vehicles, information technology and power systems for management of energy systems, power interfaces and service scheduling. Researchers and advanced students developing electric/hybrid vehicles and intelligent transport systems in industry and academia will find this book invaluable. As will researchers and advanced students working on automotive engineering and battery/power engineering.


Valve-Regulated Lead-Acid Batteries

Valve-Regulated Lead-Acid Batteries

Author: Patrick T. Moseley

Publisher: Elsevier

Published: 2004-02-24

Total Pages: 603

ISBN-13: 008047473X

DOWNLOAD EBOOK

For many decades, the lead-acid battery has been the most widely used energy-storage device for medium- and large-scale applications (approximately 100Wh and above). In recent years, the traditional, flooded design of the battery has begun to be replaced by an alternative design. This version - the valve-regulated lead-acid (VRLA) battery - requires no replenishment of the water content of the electrolyte solution, does not spill liquids, and can be used in any desired orientation. Since the VRLA battery operates in a somewhat different manner from its flooded counterpart, considerable technological development has been necessary to meet the exacting performance requirements of the full range of applications in which rechargeable batteries are used. The valve-regulated design is now well established in the industrial battery sector, and also appears set to be adopted widely for automotive duty. This book provides a comprehensive account of VRLA technology and its uses. In the future, all industrial processes - including the manufacture of batteries - will be required to conform to the conventions of sustainability. Accordingly, the crucial areas of the environmental impact associated with the production and use of VRLA batteries and the recycling of spent units are also treated thoroughly. Valve-Regulated Lead-Acid Batteries gives an essential insight into the science that underlies the development and operation of VRLA batteries and is a comprehensive reference source for those involved in the practical use of the technology in key energy-storage applications. - Covers all major advances in the field - Provides a comprehensive account of VRLA technology and its uses - First book dedicated to this technology


Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles

Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles

Author: Ottorino Veneri

Publisher: Springer

Published: 2016-12-30

Total Pages: 323

ISBN-13: 3319436511

DOWNLOAD EBOOK

This book outlines issues related to massive integration of electric and plug-in hybrid electric vehicles into power grids. Electricity is becoming the preferred energy vector for the next new generation of road vehicles. It is widely acknowledged that road vehicles based on full electric or hybrid drives can mitigate problems related to fossil fuel dependence. This book explains the emerging and understanding of storage systems for electric and plug-in hybrid vehicles. The recharging stations for these types of vehicles might represent a great advantage for the electric grid by facilitating integration of renewable and distributed energy production. This book presents a broad review from analyzing current literature to on-going research projects about the new power technologies related to the various charging architectures for electric and plug-in hybrid vehicles. Specifically focusing on DC fast charging operations, as well as, grid-connected power converters and the full range of energy storage systems. These key components are analyzed for distributed generation and charging system integration into micro-grids. The authors demonstrate that these storage systems represent effective interfaces for the control and management of renewable and sustainable distributed energy resources. New standards and applications are emerging from micro-grid pilot projects around the world and case studies demonstrate the convenience and feasibility of distributed energy management. The material in this unique volume discusses potential avenues for further research toward achieving more reliable, more secure and cleaner energy.


Analysis and Design of Hybrid Energy Storage Systems

Analysis and Design of Hybrid Energy Storage Systems

Author: Jorge Garcia

Publisher: MDPI

Published: 2020-04-17

Total Pages: 181

ISBN-13: 3039286862

DOWNLOAD EBOOK

The most important environmental challenge today's society is facing is to reduce the effects of CO2 emissions and global warming. Such an ambitious challenge can only be achieved through a holistic approach, capable of tackling the problem from a multidisciplinary point of view. One of the core technologies called to play a critical role in this approach is the use of energy storage systems. These systems enable, among other things, the balancing of the stochastic behavior of Renewable Sources and Distributed Generation in modern Energy Systems; the efficient supply of industrial and consumer loads; the development of efficient and clean transport; and the development of Nearly-Zero Energy Buildings (nZEB) and intelligent cities. Hybrid Energy Storage Systems (HESS) consist of two (or more) storage devices with complementary key characteristics, that are able to behave jointly with better performance than any of the technologies considered individually. Recent developments in storage device technologies, interface systems, control and monitoring techniques, or visualization and information technologies have driven the implementation of HESS in many industrial, commercial and domestic applications. This Special Issue focuses on the analysis, design and implementation of hybrid energy storage systems across a broad spectrum, encompassing different storage technologies (including electrochemical, capacitive, mechanical or mechanical storage devices), engineering branches (power electronics and control strategies; energy engineering; energy engineering; chemistry; modelling, simulation and emulation techniques; data analysis and algorithms; social and economic analysis; intelligent and Internet-of-Things (IoT) systems; and so on.), applications (energy systems, renewable energy generation, industrial applications, transportation, Uninterruptible Power Supplies (UPS) and critical load supply, etc.) and evaluation and performance (size and weight benefits, efficiency and power loss, economic analysis, environmental costs, etc.).


Propulsion Systems for Hybrid Vehicles

Propulsion Systems for Hybrid Vehicles

Author: John M. Miller

Publisher: IET

Published: 2008

Total Pages: 473

ISBN-13: 0863419151

DOWNLOAD EBOOK

Offering in-depth coverage of hybrid propulsion topics, energy storage systems and modelling, and supporting electrical systems, this book will be an invaluable resource for practising engineers and managers involved in all aspects of hybrid vehicle development, modelling, simulation and testing.


Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles

Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles

Author: Chitra A.

Publisher: John Wiley & Sons

Published: 2020-07-21

Total Pages: 288

ISBN-13: 1119681901

DOWNLOAD EBOOK

Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change. An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program. This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub for information on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams.


Electric and Hybrid Vehicles

Electric and Hybrid Vehicles

Author: Gianfranco Pistoia

Publisher: Elsevier

Published: 2010-07-27

Total Pages: 671

ISBN-13: 0444535667

DOWNLOAD EBOOK

Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market reviews the performance, cost, safety, and sustainability of battery systems for hybrid electric vehicles (HEVs) and electric vehicles (EVs), including nickel-metal hydride batteries and Li-ion batteries. Throughout this book, especially in the first chapters, alternative vehicles with different power trains are compared in terms of lifetime cost, fuel consumption, and environmental impact. The emissions of greenhouse gases are particularly dealt with. The improvement of the battery, or fuel cell, performance and governmental incentives will play a fundamental role in determining how far and how substantial alternative vehicles will penetrate into the market. An adequate recharging infrastructure is of paramount importance for the diffusion of vehicles powered by batteries and fuel cells, as it may contribute to overcome the so-called range anxiety."" Thus, proposed battery charging techniques are summarized and hydrogen refueling stations are described. The final chapter reviews the state of the art of the current models of hybrid and electric vehicles along with the powertrain solutions adopted by the major automakers. - Contributions from the worlds leading industry and research experts - Executive summaries of specific case studies - Information on basic research and application approaches


Hybrid Electric Vehicles

Hybrid Electric Vehicles

Author: Chris Mi

Publisher: John Wiley & Sons

Published: 2017-11-29

Total Pages: 611

ISBN-13: 111897056X

DOWNLOAD EBOOK

The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters Covers recent developments, breakthroughs, and technologies, including new drive topologies Explains HEV fundamentals and applications Offers a holistic perspective on vehicle electrification Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering.


Electric, Hybrid, and Fuel Cell Vehicles

Electric, Hybrid, and Fuel Cell Vehicles

Author: Amgad Elgowainy

Publisher: Springer

Published: 2021-09-30

Total Pages: 0

ISBN-13: 9781071614914

DOWNLOAD EBOOK

This volume of "Encyclopedia of Sustainability Science and Technology, Second Edition," covers the electrification of vehicles, which is key to a sustainable future of transportation in both light-duty and heavy-duty vehicle sectors to address global concerns of climate change, air pollutant emissions, energy efficiency and energy security. Vehicle electrification includes several existing and emerging technologies and powertrain architectures such as conventional hybrid electric vehicles (HEVs), plug-in hybrids with various electric driving range, short- and long-range battery electric vehicles, as well as hydrogen fuel cell electric vehicles (FCEVs). Electrification will be key to connected autonomous vehicles, which are perceived to improve mobility, increase safety, reduce energy consumption and infrastructure costs, improve productivity, decrease traffic congestion and increase customer satisfaction. While electrification of vehicle technologies is relatively mature, technology improvement and economies of scale are needed to compete against incumbent technologies and to realize their benefits in the marketplace. Significant infrastructure development is needed in the case of hydrogen fuel cell vehicles and to a lesser extent for plug-in electric vehicles. Vehicle efficiency improvement is sought through a combination of several approaches, including weight reduction, engine downsizing, increased engine compression ratio with high octane fuels, and the use of compression ignition engines with low octane fuels. Liquid hydrocarbon fuels are needed in applications where high storage energy density is required such as long-haul class-8 combination heavy-duty trucks. Shared mobility is another emerging concept that enables access to transportation services on an as-needed basis. This approach can enhance accessibility to transportation, decrease number of vehicles on the road, reduce energy use and impact on the environment, reduce cost of transportation and the need for parking, and reduce transportation time between origin and destination. In all, the reader will receive a comprehensive introduction to electric vehicles and technology trends, including energy storage, in light-, medium-, and heavy-duty sectors, as well as the infrastructure development that will be required to realize these benefits for society.