The Finite Volume Method in Computational Fluid Dynamics

The Finite Volume Method in Computational Fluid Dynamics

Author: F. Moukalled

Publisher: Springer

Published: 2015-08-13

Total Pages: 799

ISBN-13: 3319168746

DOWNLOAD EBOOK

This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.


Boundary Layer Flows - Advances in Experimentation, Modelling and Simulation

Boundary Layer Flows - Advances in Experimentation, Modelling and Simulation

Author: Zambri Harun

Publisher: BoD – Books on Demand

Published: 2024-07-24

Total Pages: 146

ISBN-13: 183769835X

DOWNLOAD EBOOK

Fluid mechanics is a branch of physics with important applications in daily life. The calculation of flow drag on automobiles and high-speed trains benefits from theories in fluid mechanics. Moreover, many mechanical-based devices such as fluid pumps contribute to efficiency, and thus, to the modernization of society. This book highlights the experimental and theoretical aspects of wall-bounded flows to provide important information about related theories and applications. Boundary layer flow experimentation, modelling, and simulation must be considered together to obtain accurate calculations of parameters such as velocity profiles, pressure distribution, and turbulence level. This book is organized into three sections on the structure of the boundary layer, drag reduction initiatives using active control, and the verification and applications of flow mechanics. Chapters discuss the boundary layer type of different pressure gradients, Reynolds number, and speeds from 5 m/s to Mach 3. They also present the results of research on the active control technique for drag reduction initiatives to achieve efficient turbulence in high-speed applications, flow meter devices, and turbulence-generated noise mitigation initiatives.


2015-2016 Assessment of the Army Research Laboratory

2015-2016 Assessment of the Army Research Laboratory

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-05-01

Total Pages: 235

ISBN-13: 0309454360

DOWNLOAD EBOOK

The National Academies of Sciences, Engineering, and Medicine's Army Research Laboratory Technical Assessment Board (ARLTAB) provides biennial assessments of the scientific and technical quality of the research, development, and analysis programs at the Army Research Laboratory (ARL), focusing on ballistics sciences, human sciences, information sciences, materials sciences, and mechanical sciences. This biennial report summarizes the findings of the ARLTAB from the reviews conducted by the panels in 2015 and 2016 and subsumes the 2015-2016 interim report.


Image-Based Geometric Modeling and Mesh Generation

Image-Based Geometric Modeling and Mesh Generation

Author: Yongjie (Jessica) Zhang

Publisher: Springer Science & Business Media

Published: 2012-07-03

Total Pages: 302

ISBN-13: 940074255X

DOWNLOAD EBOOK

As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.


Post-Processing Techniques for Metal-Based Additive Manufacturing

Post-Processing Techniques for Metal-Based Additive Manufacturing

Author: Hao Wang

Publisher: CRC Press

Published: 2023-09-04

Total Pages: 311

ISBN-13: 1000935590

DOWNLOAD EBOOK

This book shares insights on post-processing techniques adopted to achieve precision-grade surfaces of additive manufactured metals including material characterization techniques and the identified material properties. Post-processes are discussed from support structure removal and heat treatment to the material removal processes including hybrid manufacturing. Also discussed are case studies on unique applications of additive manufactured metals as an exemplary of the considerations taken during post-processing design and selection. Addresses the critical aspect of post-processing for metal additive manufacturing Provides systematic introduction of pertinent materials Demonstrates post-process technique selection with the enhanced understanding of material characterization methods and evaluation Includes in-depth validation of ultra-precision machining technology Reviews precision fabrication of industrial-grade titanium alloys, steels, and aluminium alloys, with additive manufacturing technology The book is aimed at researchers, professionals, and graduate students in advanced manufacturing, additive manufacturing, machining, and materials processing.


The Lattice Boltzmann Method

The Lattice Boltzmann Method

Author: Timm Krüger

Publisher: Springer

Published: 2016-11-07

Total Pages: 705

ISBN-13: 3319446495

DOWNLOAD EBOOK

This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.