CFD simulations of particle laden flows: Particle transport and separation

CFD simulations of particle laden flows: Particle transport and separation

Author: David Schellander

Publisher: Anchor Academic Publishing (aap_verlag)

Published: 2014-02-01

Total Pages: 152

ISBN-13: 3954896710

DOWNLOAD EBOOK

This study presents the basic models for discrete and continuous particle laden flow simulation. An overview of the two main approaches, the Lagrangian discrete particle model and the Eulerian granular phase model is given. Moreover these two approaches are combined to a hybrid model to use the benefits of the discrete and continuous description. This safes computational time and increase the efficiency of particle laden flow simulations. Furthermore the models are extended to poly-disperse particles including a simple agglomeration model based on a population balance equation. Finally the usability of the models is shown at a pneumatic particle transport system including particle strand building and the separation of particles using an industrial cyclone.


Gas Cyclones and Swirl Tubes

Gas Cyclones and Swirl Tubes

Author: Alex C. Hoffmann

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 347

ISBN-13: 3662073773

DOWNLOAD EBOOK

This book has been conceived to provide guidance on the theory and design of cyclone systems. Forthose new to the topic, a cyclone is, in its most basic form, a stationary mechanical device that utilizes centrifugal force to separate solid or liquid particles from a carrier gas. Gas enters near the top via a tangential or vaned inlet, which gives rise to an axially descending spiral of gas and a centrifugal force field that causes the incoming particles to concentrate along, and spiral down, the inner walls of the separator. The thus-segregated particulate phase is allowed to exit out an underflow pipe while the gas phase constricts, and - in most separators - reverses its axial direction of flow and exits out a separate overflow pipe. Cyclones are applied in both heavy and light industrial applications and may be designed as either classifiers or separators. Their applications are as plentiful as they are varied. Examples include their use in the separation or classification of powder coatings, plastic fines, sawdust, wood chips, sand, sintered/powdered meta!, plastic and meta! pellets, rock and mineral cmshings, carbon fines, grain products, pulverized coal, chalk, coal and coal ash, catalyst and petroleum coke fines, mist entrained off of various processing units and liquid components from scmbbing and drilling operations. They have even been applied to separate foam into its component gas and liquid phases in recent years.


Direct and Large-Eddy Simulation XI

Direct and Large-Eddy Simulation XI

Author: Maria Vittoria Salvetti

Publisher: Springer

Published: 2019-02-02

Total Pages: 562

ISBN-13: 3030049159

DOWNLOAD EBOOK

This book gathers the proceedings of the 11th workshop on Direct and Large Eddy Simulation (DLES), which was held in Pisa, Italy in May 2017. The event focused on modern techniques for simulating turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structures, as Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) or hybrid models based on a combination of LES and RANS approaches. In light of the growing capacities of modern computers, these approaches have been gaining more and more interest over the years and will undoubtedly be developed and applied further. The workshop offered a unique opportunity to establish a state-of-the-art of DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows and to discuss about recent advances and applications. This volume contains most of the contributed papers, which were submitted and further reviewed for publication. They cover advances in computational techniques, SGS modeling, boundary conditions, post-processing and data analysis, and applications in several fields, namely multiphase and reactive flows, convection and heat transfer, compressible flows, aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows and wall turbulence and other complex flows.


Transport Phenomena In Combustion

Transport Phenomena In Combustion

Author: SH Chan

Publisher: Taylor & Francis

Published: 2024-09-06

Total Pages: 1862

ISBN-13: 1351407007

DOWNLOAD EBOOK

This two-volume set presents the proceedings from the 8th International Symposium on Transport Phenomena in Combustion. There are more than 150 chapters that provide an extensive review of topics such as complete numerical simulation of combustion and heat transfer in furnaces and boilers, the interaction of combustion and heat transfer in porous media for low emission, high efficiency applications, industrial combustion technology, experimental and diagnostic methods and active combustion control, and fire research, internal combustion engine, Nox and soot emission.


Direct and Large-Eddy Simulation IX

Direct and Large-Eddy Simulation IX

Author: Jochen Fröhlich

Publisher: Springer

Published: 2015-01-27

Total Pages: 656

ISBN-13: 3319144480

DOWNLOAD EBOOK

This volume reflects the state of the art of numerical simulation of transitional and turbulent flows and provides an active forum for discussion of recent developments in simulation techniques and understanding of flow physics. Following the tradition of earlier DLES workshops, these papers address numerous theoretical and physical aspects of transitional and turbulent flows. At an applied level it contributes to the solution of problems related to energy production, transportation, magneto-hydrodynamics and the environment. A special session is devoted to quality issues of LES. The ninth Workshop on 'Direct and Large-Eddy Simulation' (DLES-9) was held in Dresden, April 3-5, 2013, organized by the Institute of Fluid Mechanics at Technische Universität Dresden. This book is of interest to scientists and engineers, both at an early level in their career and at more senior levels.


Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows

Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows

Author: Shankar Subramaniam

Publisher: Academic Press

Published: 2022-10-20

Total Pages: 588

ISBN-13: 0323901344

DOWNLOAD EBOOK

Modelling Approaches and Computational Methods for Particle-laden Turbulent Flows introduces the principal phenomena observed in applications where turbulence in particle-laden flow is encountered while also analyzing the main methods for analyzing numerically. The book takes a practical approach, providing advice on how to select and apply the correct model or tool by drawing on the latest research. Sections provide scales of particle-laden turbulence and the principal analytical frameworks and computational approaches used to simulate particles in turbulent flow. Each chapter opens with a section on fundamental concepts and theory before describing the applications of the modelling approach or numerical method. Featuring explanations of key concepts, definitions, and fundamental physics and equations, as well as recent research advances and detailed simulation methods, this book is the ideal starting point for students new to this subject, as well as an essential reference for experienced researchers. - Provides a comprehensive introduction to the phenomena of particle laden turbulent flow - Explains a wide range of numerical methods, including Eulerian-Eulerian, Eulerian-Lagrange, and volume-filtered computation - Describes a wide range of innovative applications of these models


Seismic Imaging, Fault Damage and Heal

Seismic Imaging, Fault Damage and Heal

Author: Yong-Gang Li

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-05-21

Total Pages: 388

ISBN-13: 3110329956

DOWNLOAD EBOOK

Presenting current approaches in observational and computational seismology, this book introduces advanced methods and techniques by means of case studies in earthquake research. Among others these include solving inverse seismologic problems, tomography for structure imaging, characterizing fault damage and healing, seismicity analysis for determining pre-shock moment release, and coupled solid-fluid models.


Engineering Turbulence Modelling and Experiments 5

Engineering Turbulence Modelling and Experiments 5

Author: W. Rodi

Publisher: Elsevier

Published: 2002-08-21

Total Pages: 1029

ISBN-13: 008053094X

DOWNLOAD EBOOK

Turbulence is one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends increasingly on the performance of the turbulence models. This series of symposia provides a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. The papers in this set of proceedings were presented at the 5th International Symposium on Engineering Turbulence Modelling and Measurements in September 2002. They look at a variety of areas, including: Turbulence modelling; Direct and large-eddy simulations; Applications of turbulence models; Experimental studies; Transition; Turbulence control; Aerodynamic flow; Aero-acoustics; Turbomachinery flows; Heat transfer; Combustion systems; Two-phase flows. These papers are preceded by a section containing 6 invited papers covering various aspects of turbulence modelling and simulation as well as their practical application, combustion modelling and particle-image velocimetry.


Genetic Programming

Genetic Programming

Author: Gisele Pappa

Publisher: Springer Nature

Published: 2023-03-28

Total Pages: 366

ISBN-13: 3031295730

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 26th European Conference on Genetic Programming, EuroGP 2023, held as part of EvoStar 2023, in Brno, Czech Republic, during April 12–14, 2023, and co-located with the EvoStar events, EvoCOP, EvoMUSART, and EvoApplications. The 14 revised full papers and 8 short papers presented in this book were carefully reviewed and selected from 38 submissions. The wide range of topics in this volume reflects the current state of research in the field. The collection of papers cover topics including developing new variants of GP algorithms for both optimization and machine learning problems as well as exploring GP to address complex real-world problems.


Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses

Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses

Author: Fengshou Zhang

Publisher: Springer Nature

Published: 2023-09-11

Total Pages: 316

ISBN-13: 3031257871

DOWNLOAD EBOOK

The subject of thermo-hydro-mechanical coupled processes in fractured rock masses has close relevance to energy-related deep earth engineering activities, such as enhanced geothermal systems, geological disposal of radioactive waste, sequestration of CO2, long-term disposal of waste water and recovery of hydrocarbons from unconventional reservoirs. Despite great efforts by engineers and researchers, comprehensive understanding of the thermo-hydro-mechanical coupled processes in fractured rock mass remains a great challenge. The discrete element method (DEM), originally developed by Dr. Peter Cundall, has become widely used for the modeling of a rock mass, including its deformation, damage, fracturing and stability. DEM modeling of the coupled thermo-hydro-mechanical processes in fractured rock masses can provide some unique insights, to say the least, for better understanding of those complex issues. The authors of this book have participated in various projects involving DEM modeling of coupled thermo-hydro-mechanical processes during treatment of a rock mass by fluid injection and/or extraction and have provided consulting services to some of the largest oil-and-gas companies in the world. The breadth and depth of our engineering expertise are reflected by its successful applications in the major unconventional plays in the world, including Permian, Marcellus, Bakken, Eagle Ford, Horn River, Chicontepec, Sichuan, Ordos and many more. The unique combination of the state-of-the-art numerical modeling techniques with state-of-the-practice engineering applications makes the presented material relevant and valuable for engineering practice. We believe that it is beneficial to share the advances on this subject and promote some further development.