Hybrid neural systems are computational systems which are based mainly on artificial neural networks and allow for symbolic interpretation or interaction with symbolic components. This book is derived from a workshop held during the NIPS'98 in Denver, Colorado, USA, and competently reflects the state of the art of research and development in hybrid neural systems. The 26 revised full papers presented together with an introductory overview by the volume editors have been through a twofold process of careful reviewing and revision. The papers are organized in the following topical sections: structured connectionism and rule representation; distributed neural architectures and language processing; transformation and explanation; robotics, vision, and cognitive approaches.
Hybrid neural systems are computational systems which are based mainly on artificial neural networks and allow for symbolic interpretation or interaction with symbolic components. This book is derived from a workshop held during the NIPS'98 in Denver, Colorado, USA, and competently reflects the state of the art of research and development in hybrid neural systems. The 26 revised full papers presented together with an introductory overview by the volume editors have been through a twofold process of careful reviewing and revision. The papers are organized in the following topical sections: structured connectionism and rule representation; distributed neural architectures and language processing; transformation and explanation; robotics, vision, and cognitive approaches.
This book is intended for specialists as well as students and graduate students in the field of artificial intelligence, robotics and information technology. It is will also appeal to a wide range of readers interested in expanding the functionality of artificial intelligence systems. One of the pressing problems of modern artificial intelligence systems is the development of integrated hybrid systems based on deep learning. Unfortunately, there is currently no universal methodology for developing topologies of hybrid neural networks (HNN) using deep learning. The development of such systems calls for the expansion of the use of neural networks (NS) for solving recognition, classification and optimization problems. As such, it is necessary to create a unified methodology for constructing HNN with a selection of models of artificial neurons that make up HNN, gradually increasing the complexity of their structure using hybrid learning algorithms.
This two-volume set LNCS 6691 and 6692 constitutes the refereed proceedings of the 11th International Work-Conference on Artificial Neural Networks, IWANN 2011, held in Torremolinos-Málaga, Spain, in June 2011. The 154 revised papers were carefully reviewed and selected from 202 submissions for presentation in two volumes. The first volume includes 69 papers organized in topical sections on mathematical and theoretical methods in computational intelligence; learning and adaptation; bio-inspired systems and neuro-engineering; hybrid intelligent systems; applications of computational intelligence; new applications of brain-computer interfaces; optimization algorithms in graphic processing units; computing languages with bio-inspired devices and multi-agent systems; computational intelligence in multimedia processing; and biologically plausible spiking neural processing.
Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis
"This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.
The second edition of this book provides a comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence, which in recent years, has turned synonymous to it. The constituent technologies discussed comprise neural network (NN), fuzzy system (FS), evolutionary algorithm (EA), and a number of hybrid systems, which include classes such as neuro-fuzzy, evolutionary-fuzzy, and neuro-evolutionary systems. The hybridization of the technologies is demonstrated on architectures such as fuzzy backpropagation network (NN-FS hybrid), genetic algorithm-based backpropagation network (NN-EA hybrid), simplified fuzzy ARTMAP (NN-FS hybrid), fuzzy associative memory (NN-FS hybrid), fuzzy logic controlled genetic algorithm (EA-FS hybrid) and evolutionary extreme learning machine (NN-EA hybrid) Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book, with a wealth of information that is clearly presented and illustrated by many examples and applications, is designed for use as a text for the courses in soft computing at both the senior undergraduate and first-year postgraduate levels of computer science and engineering. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.
Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.
Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems.