Readers will find out about the other planets that scientists have discovered through accessible text, fun fact boxes, and amazing photographs. They will be introduced to amazing scientific tools including the Kepler telescope, which has assisted in locating many planets outside of our solar system. The question of other planets sustaining life, as it is on earth, has been plaguing scientists and curious minds for some time. Along with fuel scientists, readers will speculate whether there are habitable planets and if people could move to them or not.
The field of planetary biology and chemical evolution draws together experts in astronomy, paleobiology, biochemistry, and space science who work together to understand the evolution of living systems. This field has made exciting discoveries that shed light on how organic compounds came together to form self-replicating molecules-the origin of life. This volume updates that progress and offers recommendations on research programs-including an ambitious effort centered on Mars-to advance the field over the next 10 to 15 years. The book presents a wide range of data and research results on these and other issues: The biogenic elements and their interaction in the interstellar clouds and in solar nebulae. Early planetary environments and the conditions that lead to the origin of life. The evolution of cellular and multicellular life. The search for life outside the solar system. This volume will become required reading for anyone involved in the search for life's beginnings-including exobiologists, geoscientists, planetary scientists, and U.S. space and science policymakers.
The amazing science behind the search for Earth-like planets Ever since Carl Sagan first predicted that extraterrestrial civilizations must number in the millions, the search for life on other planets has gripped our imagination. Is Earth so rare that advanced life forms like us—or even the simplest biological organisms—are unique to the universe? How to Find a Habitable Planet describes how scientists are testing Sagan's prediction, and demonstrates why Earth may not be so rare after all. James Kasting has worked closely with NASA in its mission to detect habitable worlds outside our solar system, and in this book he introduces readers to the advanced methodologies being used in this extraordinary quest. He addresses the compelling questions that planetary scientists grapple with today: What exactly makes a planet habitable? What are the signatures of life astronomers should look for when they scan the heavens for habitable worlds? In providing answers, Kasting explains why Earth has remained habitable despite a substantial rise in solar luminosity over time, and why our neighbors, Venus and Mars, haven't. If other Earth-sized planets endowed with enough water and carbon are out there, he argues, chances are good that some of those planets sustain life. Kasting describes the efforts under way to find them, and predicts that future discoveries will profoundly alter our view of the universe and our place in it. This book is a must-read for anyone who has ever dreamed of finding other planets like ours—and perhaps even life like ours—in the cosmos. In a new afterword, Kasting presents some recent breakthroughs in the search for exoplanets and discusses the challenges facing space programs in the near future.
Along the way we meet all the major players, from astronomer Peter van de Kamp, whose dreams of discovery lived on undeterred even after years of painstaking observations proved futile, to maverick NASA administrator Daniel Goldin, who dared to suggest in 1992 that "perhaps, just perhaps, the next generation's legacy will be an image of a planet 30 light years from Earth." We watch as the brilliant innovators Michel Mayor and Didier Queloz invent a new method for detection and, defying all odds, make the first major discovery by looking in territory where seasoned astronomers said no planets could ever be found.
This volume describes the techniques with which astronomers and astrophysicists seek out worlds similar to our native planet throughout the vastness of the universe. Breaking down sometimes complicated concepts for beginning students of the cosmos, it includes the history of this planetary quest from ancient to modern times, contemporary methods used to find exoplanets, and their sheer diversity. Altogether, this otherworldly exploration, visually rich with the imagery of the heavens, gives readers a great entry point into a branch of astronomy that has thrilled inquisitive minds for millennia.
From September 2007 to June 2008 the Space Studies Board conducted an international public seminar series, with each monthly talk highlighting a different topic in space and Earth science. The principal lectures from the series are compiled in Forging the Future of Space Science. The topics of these events covered the full spectrum of space and Earth science research, from global climate change, to the cosmic origins of life, to the exploration of the Moon and Mars, to the scientific research required to support human spaceflight. The prevailing messages throughout the seminar series as demonstrated by the lectures in this book are how much we have accomplished over the past 50 years, how profound are our discoveries, how much contributions from the space program affect our daily lives, and yet how much remains to be done. The age of discovery in space and Earth science is just beginning. Opportunities abound that will forever alter our destiny.
A classic introduction to the story of Earth's origin and evolution—revised and expanded for the twenty-first century Since its first publication more than twenty-five years ago, How to Build a Habitable Planet has established a legendary reputation as an accessible yet scientifically impeccable introduction to the origin and evolution of Earth, from the Big Bang through the rise of human civilization. This classic account of how our habitable planet was assembled from the stuff of stars introduced readers to planetary, Earth, and climate science by way of a fascinating narrative. Now this great book has been made even better. Harvard geochemist Charles Langmuir has worked closely with the original author, Wally Broecker, one of the world's leading Earth scientists, to revise and expand the book for a new generation of readers for whom active planetary stewardship is becoming imperative. Interweaving physics, astronomy, chemistry, geology, and biology, this sweeping account tells Earth’s complete story, from the synthesis of chemical elements in stars, to the formation of the Solar System, to the evolution of a habitable climate on Earth, to the origin of life and humankind. The book also addresses the search for other habitable worlds in the Milky Way and contemplates whether Earth will remain habitable as our influence on global climate grows. It concludes by considering the ways in which humankind can sustain Earth’s habitability and perhaps even participate in further planetary evolution. Like no other book, How to Build a Habitable Planet provides an understanding of Earth in its broadest context, as well as a greater appreciation of its possibly rare ability to sustain life over geologic time. Leading schools that have ordered, recommended for reading, or adopted this book for course use: Arizona State University Brooklyn College CUNY Columbia University Cornell University ETH Zurich Georgia Institute of Technology Harvard University Johns Hopkins University Luther College Northwestern University Ohio State University Oxford Brookes University Pan American University Rutgers University State University of New York at Binghamton Texas A&M University Trinity College Dublin University of Bristol University of California-Los Angeles University of Cambridge University Of Chicago University of Colorado at Boulder University of Glasgow University of Leicester University of Maine, Farmington University of Michigan University of North Carolina at Chapel Hill University of North Georgia University of Nottingham University of Oregon University of Oxford University of Portsmouth University of Southampton University of Ulster University of Victoria University of Wyoming Western Kentucky University Yale University
Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major physical processes that govern all planetary atmospheres. Moving from first principles to cutting-edge research, Exoplanet Atmospheres is an ideal resource for students and researchers in astronomy and earth sciences, one that will help prepare them for the next generation of planetary science. The first textbook to describe exoplanet atmospheres Illustrates concepts using examples grounded in real data Provides a step-by-step guide to understanding the structure and emergent spectrum of a planetary atmosphere Includes exercises for students
For the first time in human history, we know for certain the existence of planets around other stars. Now the fastest-growing field in space science, the time is right for this fundamental source book on the topic which will lay the foundation for its continued growth. Exoplanets serves as both an introduction for the non-specialist and a foundation for the techniques and equations used in exoplanet observation by those dedicated to the field.
“Fascinating . . . memorable . . . revealing . . . perhaps the best of Carl Sagan’s books.”—The Washington Post Book World (front page review) In Cosmos, the late astronomer Carl Sagan cast his gaze over the magnificent mystery of the Universe and made it accessible to millions of people around the world. Now in this stunning sequel, Carl Sagan completes his revolutionary journey through space and time. Future generations will look back on our epoch as the time when the human race finally broke into a radically new frontier—space. In Pale Blue Dot, Sagan traces the spellbinding history of our launch into the cosmos and assesses the future that looms before us as we move out into our own solar system and on to distant galaxies beyond. The exploration and eventual settlement of other worlds is neither a fantasy nor luxury, insists Sagan, but rather a necessary condition for the survival of the human race. “Takes readers far beyond Cosmos . . . Sagan sees humanity’s future in the stars.”—Chicago Tribune