TEXT PROCESSING AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

TEXT PROCESSING AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2023-06-26

Total Pages: 334

ISBN-13:

DOWNLOAD EBOOK

In this book, we explored a code implementation for sentiment analysis using machine learning models, including XGBoost, LightGBM, and LSTM. The code aimed to build, train, and evaluate these models on Twitter data to classify sentiments. Throughout the project, we gained insights into the key steps involved and observed the findings and functionalities of the code. Sentiment analysis is a vital task in natural language processing, and the code was to give a comprehensive approach to tackle it. The implementation began by checking if pre-trained models for XGBoost and LightGBM existed. If available, the models were loaded; otherwise, new models were built and trained. This approach allowed for reusability of trained models, saving time and effort in subsequent runs. Similarly, the code checked if preprocessed data for LSTM existed. If not, it performed tokenization and padding on the text data, splitting it into train, test, and validation sets. The preprocessed data was saved for future use. The code also provided a function to build and train the LSTM model. It defined the model architecture using the Keras Sequential API, incorporating layers like embedding, convolutional, max pooling, bidirectional LSTM, dropout, and dense output. The model was compiled with appropriate loss and optimization functions. Training was carried out, with early stopping implemented to prevent overfitting. After training, the model summary was printed, and both the model and training history were saved for future reference. The train_lstm function ensured that the LSTM model was ready for prediction by checking the existence of preprocessed data and trained models. If necessary, it performed the required preprocessing and model building steps. The pred_lstm() function was responsible for loading the LSTM model and generating predictions for the test data. The function returned the predicted sentiment labels, allowing for further analysis and evaluation. To facilitate user interaction, the code included a functionality to choose the LSTM model for prediction. The choose_prediction_lstm() function was triggered when the user selected the LSTM option from a dropdown menu. It called the pred_lstm() function, performed evaluation tasks, and visualized the results. Confusion matrices and true vs. predicted value plots were generated to assess the model's performance. Additionally, the loss and accuracy history from training were plotted, providing insights into the model's learning process. In conclusion, this project provided a comprehensive overview of sentiment analysis using machine learning models. The code implementation showcased the steps involved in building, training, and evaluating models like XGBoost, LightGBM, and LSTM. It emphasized the importance of data preprocessing, model building, and evaluation in sentiment analysis tasks. The code also demonstrated functionalities for reusing pre-trained models and saving preprocessed data, enhancing efficiency and ease of use. Through visualization techniques, such as confusion matrices and accuracy/loss curves, the code enabled a better understanding of the model's performance and learning dynamics. Overall, this project highlighted the practical aspects of sentiment analysis and illustrated how different machine learning models can be employed to tackle this task effectively.


HOTEL REVIEW: SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

HOTEL REVIEW: SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2022-03-15

Total Pages: 346

ISBN-13:

DOWNLOAD EBOOK

The data used in this project is the data published by Anurag Sharma about hotel reviews that were given by costumers. The data is given in two files, a train and test. The train.csv is the training data, containing unique User_ID for each entry with the review entered by a costumer and the browser and device used. The target variable is Is_Response, a variable that states whether the costumers was happy or not happy while staying in the hotel. This type of variable makes the project to a classification problem. The test.csv is the testing data, contains similar headings as the train data, without the target variable. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.


THREE PROJECTS: Sentiment Analysis and Prediction Using Machine Learning and Deep Learning with Python GUI

THREE PROJECTS: Sentiment Analysis and Prediction Using Machine Learning and Deep Learning with Python GUI

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2022-03-21

Total Pages: 620

ISBN-13:

DOWNLOAD EBOOK

PROJECT 1: TEXT PROCESSING AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI Twitter data used in this project was scraped from February of 2015 and contributors were asked to first classify positive, negative, and neutral tweets, followed by categorizing negative reasons (such as "late flight" or "rude service"). This data was originally posted by Crowdflower last February and includes tweets about 6 major US airlines. Additionally, Crowdflower had their workers extract the sentiment from the tweet as well as what the passenger was dissapointed about if the tweet was negative. The information of main attributes for this project are as follows: airline_sentiment : Sentiment classification.(positivie, neutral, and negative); negativereason : Reason selected for the negative opinion; airline : Name of 6 US Airlines('Delta', 'United', 'Southwest', 'US Airways', 'Virgin America', 'American'); and text : Customer's opinion. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: HOTEL REVIEW: SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI The data used in this project is the data published by Anurag Sharma about hotel reviews that were given by costumers. The data is given in two files, a train and test. The train.csv is the training data, containing unique User_ID for each entry with the review entered by a costumer and the browser and device used. The target variable is Is_Response, a variable that states whether the costumers was happy or not happy while staying in the hotel. This type of variable makes the project to a classification problem. The test.csv is the testing data, contains similar headings as the train data, without the target variable. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: STUDENT ACADEMIC PERFORMANCE ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school-related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful. Attributes in the dataset are as follows: school - student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira); sex - student's sex (binary: 'F' - female or 'M' - male); age - student's age (numeric: from 15 to 22); address - student's home address type (binary: 'U' - urban or 'R' - rural); famsize - family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3); Pstatus - parent's cohabitation status (binary: 'T' - living together or 'A' - apart); Medu - mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Fedu - father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Mjob - mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); Fjob - father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); reason - reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other'); guardian - student's guardian (nominal: 'mother', 'father' or 'other'); traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour); studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours); failures - number of past class failures (numeric: n if 1<=n<3, else 4); schoolsup - extra educational support (binary: yes or no); famsup - family educational support (binary: yes or no); paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no); activities - extra-curricular activities (binary: yes or no); nursery - attended nursery school (binary: yes or no); higher - wants to take higher education (binary: yes or no); internet - Internet access at home (binary: yes or no); romantic - with a romantic relationship (binary: yes or no); famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent); freetime - free time after school (numeric: from 1 - very low to 5 - very high); goout - going out with friends (numeric: from 1 - very low to 5 - very high); Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high); Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high); health - current health status (numeric: from 1 - very bad to 5 - very good); absences - number of school absences (numeric: from 0 to 93); G1 - first period grade (numeric: from 0 to 20); G2 - second period grade (numeric: from 0 to 20); and G3 - final grade (numeric: from 0 to 20, output target). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.


SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI

SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2022-04-11

Total Pages: 1165

ISBN-13:

DOWNLOAD EBOOK

Book 1: BANK LOAN STATUS CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of more than 100,000 customers mentioning their loan status, current loan amount, monthly debt, etc. There are 19 features in the dataset. The dataset attributes are as follows: Loan ID, Customer ID, Loan Status, Current Loan Amount, Term, Credit Score, Annual Income, Years in current job, Home Ownership, Purpose, Monthly Debt, Years of Credit History, Months since last delinquent, Number of Open Accounts, Number of Credit Problems, Current Credit Balance, Maximum Open Credit, Bankruptcies, and Tax Liens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 2: OPINION MINING AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI Opinion mining (sometimes known as sentiment analysis or emotion AI) refers to the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. This dataset was created for the Paper 'From Group to Individual Labels using Deep Features', Kotzias et. al,. KDD 2015. It contains sentences labelled with a positive or negative sentiment. Score is either 1 (for positive) or 0 (for negative). The sentences come from three different websites/fields: imdb.com, amazon.com, and yelp.com. For each website, there exist 500 positive and 500 negative sentences. Those were selected randomly for larger datasets of reviews. Amazon: contains reviews and scores for products sold on amazon.com in the cell phones and accessories category, and is part of the dataset collected by McAuley and Leskovec. Scores are on an integer scale from 1 to 5. Reviews considered with a score of 4 and 5 to be positive, and scores of 1 and 2 to be negative. The data is randomly partitioned into two halves of 50%, one for training and one for testing, with 35,000 documents in each set. IMDb: refers to the IMDb movie review sentiment dataset originally introduced by Maas et al. as a benchmark for sentiment analysis. This dataset contains a total of 100,000 movie reviews posted on imdb.com. There are 50,000 unlabeled reviews and the remaining 50,000 are divided into a set of 25,000 reviews for training and 25,000 reviews for testing. Each of the labeled reviews has a binary sentiment label, either positive or negative. Yelp: refers to the dataset from the Yelp dataset challenge from which we extracted the restaurant reviews. Scores are on an integer scale from 1 to 5. Reviews considered with scores 4 and 5 to be positive, and 1 and 2 to be negative. The data is randomly generated a 50-50 training and testing split, which led to approximately 300,000 documents for each set. Sentences: for each of the datasets above, labels are extracted and manually 1000 sentences are manually labeled from the test set, with 50% positive sentiment and 50% negative sentiment. These sentences are only used to evaluate our instance-level classifier for each dataset3. They are not used for model training, to maintain consistency with our overall goal of learning at a group level and predicting at the instance level. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 3: EMOTION PREDICTION FROM TEXT USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI In the dataset used in this project, there are two columns, Text and Emotion. Quite self-explanatory. The Emotion column has various categories ranging from happiness to sadness to love and fear. You will build and implement machine learning and deep learning models which can identify what words denote what emotion. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 4: HATE SPEECH DETECTION AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI The objective of this task is to detect hate speech in tweets. For the sake of simplicity, a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets. Formally, given a training sample of tweets and labels, where label '1' denotes the tweet is racist/sexist and label '0' denotes the tweet is not racist/sexist, the objective is to predict the labels on the test dataset. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, LSTM, and CNN. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 5: TRAVEL REVIEW RATING CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project has been sourced from the Machine Learning Repository of University of California, Irvine (UC Irvine): Travel Review Ratings Data Set. This dataset is populated by capturing user ratings from Google reviews. Reviews on attractions from 24 categories across Europe are considered. Google user rating ranges from 1 to 5 and average user rating per category is calculated. The attributes in the dataset are as follows: Attribute 1 : Unique user id; Attribute 2 : Average ratings on churches; Attribute 3 : Average ratings on resorts; Attribute 4 : Average ratings on beaches; Attribute 5 : Average ratings on parks; Attribute 6 : Average ratings on theatres; Attribute 7 : Average ratings on museums; Attribute 8 : Average ratings on malls; Attribute 9 : Average ratings on zoo; Attribute 10 : Average ratings on restaurants; Attribute 11 : Average ratings on pubs/bars; Attribute 12 : Average ratings on local services; Attribute 13 : Average ratings on burger/pizza shops; Attribute 14 : Average ratings on hotels/other lodgings; Attribute 15 : Average ratings on juice bars; Attribute 16 : Average ratings on art galleries; Attribute 17 : Average ratings on dance clubs; Attribute 18 : Average ratings on swimming pools; Attribute 19 : Average ratings on gyms; Attribute 20 : Average ratings on bakeries; Attribute 21 : Average ratings on beauty & spas; Attribute 22 : Average ratings on cafes; Attribute 23 : Average ratings on view points; Attribute 24 : Average ratings on monuments; and Attribute 25 : Average ratings on gardens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 6: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.


OPINION MINING AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

OPINION MINING AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2023-06-27

Total Pages: 277

ISBN-13:

DOWNLOAD EBOOK

In the context of sentiment analysis and opinion mining, this project began with dataset exploration. The dataset, comprising user reviews or social media posts, was examined to understand the sentiment labels' distribution. This analysis provided insights into the prevalence of positive or negative opinions, laying the foundation for sentiment classification. To tackle sentiment classification, we employed a range of machine learning algorithms, including Support Vector, Logistic Regression, K-Nearest Neighbours Classiier, Decision Tree, Random Forest Classifier, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting, and Adaboost Classifiers. These algorithms were combined with different vectorization techniques such as Hashing Vectorizer, Count Vectorizer, and TF-IDF Vectorizer. By converting text data into numerical representations, these models were trained and evaluated to identify the most effective combination for sentiment classification. In addition to traditional machine learning algorithms, we explored the power of recurrent neural networks (RNNs) and their variant, Long Short-Term Memory (LSTM). LSTM is particularly adept at capturing contextual dependencies and handling sequential data. The text data was tokenized and padded to ensure consistent input length, allowing the LSTM model to learn from the sequential nature of the text. Performance metrics, including accuracy, were used to evaluate the model's ability to classify sentiments accurately. Furthermore, we delved into Convolutional Neural Networks (CNNs), another deep learning model known for its ability to extract meaningful features. The text data was preprocessed and transformed into numerical representations suitable for CNN input. The architecture of the CNN model, consisting of embedding, convolutional, pooling, and dense layers, facilitated the extraction of relevant features and the classification of sentiments. Analyzing the results of our machine learning models, we gained insights into their effectiveness in sentiment classification. We observed the accuracy and performance of various algorithms and vectorization techniques, enabling us to identify the models that achieved the highest accuracy and overall performance. LSTM and CNN, being more advanced models, aimed to capture complex patterns and dependencies in the text data, potentially resulting in improved sentiment classification. Monitoring the training history and metrics of the LSTM and CNN models provided valuable insights. We examined the learning progress, convergence behavior, and generalization capabilities of the models. Through the evaluation of performance metrics and convergence trends, we gained an understanding of the models' ability to learn from the data and make accurate predictions. Confusion matrices played a crucial role in assessing the models' predictions. They provided a detailed analysis of the models' classification performance, highlighting the distribution of correct and incorrect classifications for each sentiment category. This analysis allowed us to identify potential areas of improvement and fine-tune the models accordingly. In addition to confusion matrices, visualizations comparing the true values with the predicted values were employed to evaluate the models' performance. These visualizations provided a comprehensive overview of the models' classification accuracy and potential areas for improvement. They allowed us to assess the alignment between the models' predictions and the actual sentiment labels, enabling a deeper understanding of the models' strengths and weaknesses. Overall, the exploration of machine learning, LSTM, and CNN models for sentiment analysis and opinion mining aimed to develop effective tools for understanding public opinions. The results obtained from this project showcased the models' performance, convergence behavior, and their ability to accurately classify sentiments. These insights can be leveraged by businesses and organizations to gain a deeper understanding of the sentiments expressed towards their products or services, enabling them to make informed decisions and adapt their strategies accordingly.


TRAVEL REVIEW RATING CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI

TRAVEL REVIEW RATING CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2022-04-05

Total Pages: 228

ISBN-13:

DOWNLOAD EBOOK

The dataset used in this project has been sourced from the Machine Learning Repository of University of California, Irvine (UC Irvine): Travel Review Ratings Data Set. This dataset is populated by capturing user ratings from Google reviews. Reviews on attractions from 24 categories across Europe are considered. Google user rating ranges from 1 to 5 and average user rating per category is calculated. The attributes in the dataset are as follows: Attribute 1 : Unique user id; Attribute 2 : Average ratings on churches; Attribute 3 : Average ratings on resorts; Attribute 4 : Average ratings on beaches; Attribute 5 : Average ratings on parks; Attribute 6 : Average ratings on theatres; Attribute 7 : Average ratings on museums; Attribute 8 : Average ratings on malls; Attribute 9 : Average ratings on zoo; Attribute 10 : Average ratings on restaurants; Attribute 11 : Average ratings on pubs/bars; Attribute 12 : Average ratings on local services; Attribute 13 : Average ratings on burger/pizza shops; Attribute 14 : Average ratings on hotels/other lodgings; Attribute 15 : Average ratings on juice bars; Attribute 16 : Average ratings on art galleries; Attribute 17 : Average ratings on dance clubs; Attribute 18 : Average ratings on swimming pools; Attribute 19 : Average ratings on gyms; Attribute 20 : Average ratings on bakeries; Attribute 21 : Average ratings on beauty & spas; Attribute 22 : Average ratings on cafes; Attribute 23 : Average ratings on view points; Attribute 24 : Average ratings on monuments; and Attribute 25 : Average ratings on gardens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.


Deep Learning-Based Approaches for Sentiment Analysis

Deep Learning-Based Approaches for Sentiment Analysis

Author: Basant Agarwal

Publisher: Springer Nature

Published: 2020-01-24

Total Pages: 326

ISBN-13: 9811512167

DOWNLOAD EBOOK

This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.


EMOTION PREDICTION FROM TEXT USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

EMOTION PREDICTION FROM TEXT USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2023-06-28

Total Pages: 327

ISBN-13:

DOWNLOAD EBOOK

This is a captivating book that delves into the intricacies of building a robust system for emotion detection in textual data. Throughout this immersive exploration, readers are introduced to the methodologies, challenges, and breakthroughs in accurately discerning the emotional context of text. The book begins by highlighting the importance of emotion detection in various domains such as social media analysis, customer sentiment evaluation, and psychological research. Understanding human emotions in text is shown to have a profound impact on decision-making processes and enhancing user experiences. Readers are then guided through the crucial stages of data preprocessing, where text is carefully cleaned, tokenized, and transformed into meaningful numerical representations using techniques like Count Vectorization, TF-IDF Vectorization, and Hashing Vectorization. Traditional machine learning models, including Logistic Regression, Random Forest, XGBoost, LightGBM, and Convolutional Neural Network (CNN), are explored to provide a foundation for understanding the strengths and limitations of conventional approaches. However, the focus of the book shifts towards the Long Short-Term Memory (LSTM) model, a powerful variant of recurrent neural networks. Leveraging word embeddings, the LSTM model adeptly captures semantic relationships and long-term dependencies present in text, showcasing its potential in emotion detection. The LSTM model's exceptional performance is revealed, achieving an astounding accuracy of 86% on the test dataset. Its ability to grasp intricate emotional nuances ingrained in textual data is demonstrated, highlighting its effectiveness in capturing the rich tapestry of human emotions. In addition to the LSTM model, the book also explores the Convolutional Neural Network (CNN) model, which exhibits promising results with an accuracy of 85% on the test dataset. The CNN model excels in capturing local patterns and relationships within the text, providing valuable insights into emotion detection. To enhance usability, an intuitive training and predictive interface is developed, enabling users to train their own models on custom datasets and obtain real-time predictions for emotion detection. This interactive interface empowers users with flexibility and accessibility in utilizing the trained models. The book further delves into the performance comparison between the LSTM model and traditional machine learning models, consistently showcasing the LSTM model's superiority in capturing complex emotional patterns and contextual cues within text data. Future research directions are explored, including the integration of pre-trained language models such as BERT and GPT, ensemble techniques for further improvements, and the impact of different word embeddings on emotion detection. Practical applications of the developed system and models are discussed, ranging from sentiment analysis and social media monitoring to customer feedback analysis and psychological research. Accurate emotion detection unlocks valuable insights, empowering decision-making processes and fostering meaningful connections. In conclusion, this project encapsulates a transformative expedition into understanding human emotions in text. By harnessing the power of machine learning techniques, the book unlocks the potential for accurate emotion detection, empowering industries to make data-driven decisions, foster connections, and enhance user experiences. This book serves as a beacon for researchers, practitioners, and enthusiasts venturing into the captivating world of emotion detection in text.


Sentiment Analysis of Product Reviews

Sentiment Analysis of Product Reviews

Author: Chinmay Milind Suryavanshi

Publisher:

Published: 2021

Total Pages: 40

ISBN-13:

DOWNLOAD EBOOK

Digital reviews play a critical role in improving global customer interaction and shaping consumer purchasing habits. E-commerce websites generate thousands of reviews about different products on their website. It is almost impossible to read and understand each review and it would take a considerable amount of man-force to decipher each review and understand customer's opinions. Sentiment Analysis is the process of identifying, extracting, and studying subjective knowledge using Natural Language Processing (NLP). In the context of product reviews, it involves studying consumer behavior to understand their shopping interests or patterns and then using that to understand their sentiment towards a product and manufacturer or a company. In the proposed work, over 20,000 reviews have been classified into positive and negative sentiments using Sentiment Analysis and machine learning. This model can then be used to predict the sentiment of the product review entered by the user. Logistic Regression, a linear implementation of Support Vector Machines called Linear Support Vector Classifier (LSVC) and Decision Tree algorithms have been used for the classification of reviews. The results show that the highest accuracy is achieved by Logistic Regression. The review can be entered by the user in our Graphical User Interface (GUI) which is then processed as input to our model which predicts the sentiment. The review along with its classified sentiment will be displayed to the user. The project also proposes an Aspect-Based sentiment analysis approach to extract the aspects or features of the product along with its associated opinion word, both of which are displayed on the command prompt. This Aspect-Based approach will help the business owner to extract the exact features loved or hated by the customers. The GUI is constructed using the Flask framework which uses Python programming language. This study shows that Logistic Regression has the highest accuracy compared to other algorithms.


New Opportunities for Sentiment Analysis and Information Processing

New Opportunities for Sentiment Analysis and Information Processing

Author: Sharaff, Aakanksha

Publisher: IGI Global

Published: 2021-06-25

Total Pages: 311

ISBN-13: 179988063X

DOWNLOAD EBOOK

Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts. New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.