Homogeneous Structures on Riemannian Manifolds

Homogeneous Structures on Riemannian Manifolds

Author: F. Tricerri

Publisher: Cambridge University Press

Published: 1983-06-23

Total Pages: 145

ISBN-13: 0521274893

DOWNLOAD EBOOK

The central theme of this book is the theorem of Ambrose and Singer, which gives for a connected, complete and simply connected Riemannian manifold a necessary and sufficient condition for it to be homogeneous. This is a local condition which has to be satisfied at all points, and in this way it is a generalization of E. Cartan's method for symmetric spaces. The main aim of the authors is to use this theorem and representation theory to give a classification of homogeneous Riemannian structures on a manifold. There are eight classes, and some of these are discussed in detail. Using the constructive proof of Ambrose and Singer many examples are discussed with special attention to the natural correspondence between the homogeneous structure and the groups acting transitively and effectively as isometrics on the manifold.


Homogeneous Structures on Riemannian Manifolds

Homogeneous Structures on Riemannian Manifolds

Author: Franco Tricerri

Publisher:

Published: 2014-05-14

Total Pages: 144

ISBN-13: 9781107087309

DOWNLOAD EBOOK

The central theme of this book is the theorem of Ambrose and Singer, which gives for a connected, complete and simply connected Riemannian manifold a necessary and sufficient condition for it to be homogeneous. This is a local condition which has to be satisfied at all points, and in this way it is a generalization of E. Cartan's method for symmetric spaces. The main aim of the authors is to use this theorem and representation theory to give a classification of homogeneous Riemannian structures on a manifold. There are eight classes, and some of these are discussed in detail. Using the constructive proof of Ambrose and Singer many examples are discussed with special attention to the natural correspondence between the homogeneous structure and the groups acting transitively and effectively as isometrics on the manifold.


Topics in Geometry

Topics in Geometry

Author: Simon Gindikin

Publisher: Springer Science & Business Media

Published: 1996-06-27

Total Pages: 396

ISBN-13: 9780817638283

DOWNLOAD EBOOK

This collection of articles serves to commemorate the legacy of Joseph D'Atri, who passed away on April 29, 1993, a few days after his 55th birthday. Joe D' Atri is credited with several fundamental discoveries in ge ometry. In the beginning of his mathematical career, Joe was interested in the generalization of symmetrical spaces in the E. Cart an sense. Symmetric spaces, differentiated from other homogeneous manifolds by their geomet rical richness, allows the development of a deep analysis. Geometers have been constantly interested and challenged by the problem of extending the class of symmetric spaces so as to preserve their geometrical and analytical abundance. The name of D'Atri is tied to one of the most successful gen eralizations: Riemann manifolds in which (local) geodesic symmetries are volume-preserving (up to sign). In time, it turned out that the majority of interesting generalizations of symmetrical spaces are D'Atri spaces: natu ral reductive homogeneous spaces, Riemann manifolds whose geodesics are orbits of one-parameter subgroups, etc. The central place in D'Atri's research is occupied by homogeneous bounded domains in en, which are not symmetric. Such domains were discovered by Piatetskii-Shapiro in 1959, and given Joe's strong interest in the generalization of symmetric spaces, it was very natural for him to direct his research along this path.


The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds

The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds

Author: Peter B. Gilkey

Publisher: Imperial College Press

Published: 2007

Total Pages: 389

ISBN-13: 1860948588

DOWNLOAD EBOOK

Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature geometries play a role in brane theory. An essential reference tool for research mathematicians and physicists, this book also serves as a useful introduction to students entering this active and rapidly growing field. The author presents a comprehensive treatment of several aspects of pseudo-Riemannian geometry, including the spectral geometry of the curvature tensor, curvature homogeneity, and StanilovOCoTsankovOCoVidev theory."


Pseudo-Riemannian Homogeneous Structures

Pseudo-Riemannian Homogeneous Structures

Author: Giovanni Calvaruso

Publisher: Springer

Published: 2019-08-14

Total Pages: 238

ISBN-13: 3030181529

DOWNLOAD EBOOK

This book provides an up-to-date presentation of homogeneous pseudo-Riemannian structures, an essential tool in the study of pseudo-Riemannian homogeneous spaces. Benefiting from large symmetry groups, these spaces are of high interest in Geometry and Theoretical Physics. Since the seminal book by Tricerri and Vanhecke, the theory of homogeneous structures has been considerably developed and many applications have been found. The present work covers a gap in the literature of more than 35 years, presenting the latest contributions to the field in a modern geometric approach, with special focus on manifolds equipped with pseudo-Riemannian metrics. This unique reference on the topic will be of interest to researchers working in areas of mathematics where homogeneous spaces play an important role, such as Differential Geometry, Global Analysis, General Relativity, and Particle Physics.


Complex Analysis and Geometry

Complex Analysis and Geometry

Author: Vincenzo Ancona

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 418

ISBN-13: 1475797710

DOWNLOAD EBOOK

The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.


Riemannian Manifolds

Riemannian Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 232

ISBN-13: 0387227261

DOWNLOAD EBOOK

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.


Geometry, Algebra and Applications: From Mechanics to Cryptography

Geometry, Algebra and Applications: From Mechanics to Cryptography

Author: Marco Castrillón López

Publisher: Springer

Published: 2016-06-30

Total Pages: 203

ISBN-13: 3319320858

DOWNLOAD EBOOK

This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.


Homogeneous Finsler Spaces

Homogeneous Finsler Spaces

Author: Shaoqiang Deng

Publisher: Springer Science & Business Media

Published: 2012-08-01

Total Pages: 250

ISBN-13: 1461442443

DOWNLOAD EBOOK

Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces, leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. Readers with some background in Lie theory or differential geometry can quickly begin studying problems concerning Lie groups and Finsler geometry.​


The Mathematical Heritage Of C F Gauss

The Mathematical Heritage Of C F Gauss

Author: George M Rassias

Publisher: World Scientific

Published: 1991-09-30

Total Pages: 916

ISBN-13: 9814603791

DOWNLOAD EBOOK

This volume is a collection of original and expository papers in the fields of Mathematics in which Gauss had made many fundamental discoveries. The contributors are all outstanding in their fields and the volume will be of great interest to all research mathematicians, research workers in the history of science, and graduate students in Mathematics and Mathematical Physics.