Continuous Semigroups of Holomorphic Self-maps of the Unit Disc

Continuous Semigroups of Holomorphic Self-maps of the Unit Disc

Author: Filippo Bracci

Publisher: Springer Nature

Published: 2020-02-14

Total Pages: 582

ISBN-13: 3030367827

DOWNLOAD EBOOK

The book faces the interplay among dynamical properties of semigroups, analytical properties of infinitesimal generators and geometrical properties of Koenigs functions. The book includes precise descriptions of the behavior of trajectories, backward orbits, petals and boundary behavior in general, aiming to give a rather complete picture of all interesting phenomena that occur. In order to fulfill this task, we choose to introduce a new point of view, which is mainly based on the intrinsic dynamical aspects of semigroups in relation with the hyperbolic distance and a deep use of Carathéodory prime ends topology and Gromov hyperbolicity theory. This work is intended both as a reference source for researchers interested in the subject, and as an introductory book for beginners with a (undergraduate) background in real and complex analysis. For this purpose, the book is self-contained and all non-standard (and, mostly, all standard) results are proved in details.


Complex Analysis and Geometry

Complex Analysis and Geometry

Author: Filippo Bracci

Publisher: Springer

Published: 2015-08-05

Total Pages: 370

ISBN-13: 443155744X

DOWNLOAD EBOOK

This volume includes 28 chapters by authors who are leading researchers of the world describing many of the up-to-date aspects in the field of several complex variables (SCV). These contributions are based upon their presentations at the 10th Korean Conference on Several Complex Variables (KSCV10), held as a satellite conference to the International Congress of Mathematicians (ICM) 2014 in Seoul, Korea. SCV has been the term for multidimensional complex analysis, one of the central research areas in mathematics. Studies over time have revealed a variety of rich, intriguing, new knowledge in complex analysis and geometry of analytic spaces and holomorphic functions which were "hidden" in the case of complex dimension one. These new theories have significant intersections with algebraic geometry, differential geometry, partial differential equations, dynamics, functional analysis and operator theory, and sheaves and cohomology, as well as the traditional analysis of holomorphic functions in all dimensions. This book is suitable for a broad audience of mathematicians at and above the beginning graduate-student level. Many chapters pose open-ended problems for further research, and one in particular is devoted to problems for future investigations.


Numerical Range of Holomorphic Mappings and Applications

Numerical Range of Holomorphic Mappings and Applications

Author: Mark Elin

Publisher: Springer

Published: 2019-03-11

Total Pages: 238

ISBN-13: 3030050203

DOWNLOAD EBOOK

This book describes recent developments as well as some classical results regarding holomorphic mappings. The book starts with a brief survey of the theory of semigroups of linear operators including the Hille-Yosida and the Lumer-Phillips theorems. The numerical range and the spectrum of closed densely defined linear operators are then discussed in more detail and an overview of ergodic theory is presented. The analytic extension of semigroups of linear operators is also discussed. The recent study of the numerical range of composition operators on the unit disk is mentioned. Then, the basic notions and facts in infinite dimensional holomorphy and hyperbolic geometry in Banach and Hilbert spaces are presented, L. A. Harris' theory of the numerical range of holomorphic mappings is generalized, and the main properties of the so-called quasi-dissipative mappings and their growth estimates are studied. In addition, geometric and quantitative analytic aspects of fixed point theory are discussed. A special chapter is devoted to applications of the numerical range to diverse geometric and analytic problems.


Geometry of Holomorphic Mappings

Geometry of Holomorphic Mappings

Author: Sergey Pinchuk

Publisher: Springer Nature

Published: 2023-10-16

Total Pages: 217

ISBN-13: 3031371496

DOWNLOAD EBOOK

This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been developed in connection with these questions, and the goal of this book is to introduce the reader to some of these approaches and to demonstrate how they can be used in the context of boundary properties of holomorphic maps. The authors present substantial results concerning holomorphic mappings in several complex variables with improved and often simplified proofs. Emphasis is placed on geometric methods, including the Kobayashi metric, the Scaling method, Segre varieties, and the Reflection principle. Geometry of Holomorphic Mappings will provide a valuable resource for PhD students in complex analysis and complex geometry; it will also be of interest to researchers in these areas as a reference.


Handbook of Metric Fixed Point Theory

Handbook of Metric Fixed Point Theory

Author: W.A. Kirk

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 702

ISBN-13: 9401717486

DOWNLOAD EBOOK

Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.


Topics in Operator Theory

Topics in Operator Theory

Author: Joseph A. Ball

Publisher: Springer Science & Business Media

Published: 2011-02-09

Total Pages: 624

ISBN-13: 3034601581

DOWNLOAD EBOOK

This is the first volume of a collection of original and review articles on recent advances and new directions in a multifaceted and interconnected area of mathematics and its applications. It encompasses many topics in theoretical developments in operator theory and its diverse applications in applied mathematics, physics, engineering, and other disciplines. The purpose is to bring in one volume many important original results of cutting edge research as well as authoritative review of recent achievements, challenges, and future directions in the area of operator theory and its applications.


Stein Manifolds and Holomorphic Mappings

Stein Manifolds and Holomorphic Mappings

Author: Franc Forstnerič

Publisher: Springer Science & Business Media

Published: 2011-08-27

Total Pages: 501

ISBN-13: 3642222501

DOWNLOAD EBOOK

The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. The book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applications ranging from classical to contemporary.


Early Days in Complex Dynamics

Early Days in Complex Dynamics

Author: Daniel S. Alexander

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 474

ISBN-13: 0821844644

DOWNLOAD EBOOK

The theory of complex dynamics, whose roots lie in 19th-century studies of the iteration of complex function conducted by Koenigs, Schoder, and others, flourished remarkably during the first half of the 20th century, when many of the central ideas and techniques of the subject developed. This book paints a robust picture of the field of complex dynamics between 1906 and 1942 through detailed discussions of the work of Fatou, Julia, Siegel, and several others.


Composition Operators

Composition Operators

Author: Joel H. Shapiro

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 229

ISBN-13: 1461208874

DOWNLOAD EBOOK

The study of composition operators links some of the most basic questions you can ask about linear operators with beautiful classical results from analytic-function theory. The process invests old theorems with new mean ings, and bestows upon functional analysis an intriguing class of concrete linear operators. Best of all, the subject can be appreciated by anyone with an interest in function theory or functional analysis, and a background roughly equivalent to the following twelve chapters of Rudin's textbook Real and Complex Analysis [Rdn '87]: Chapters 1-7 (measure and integra tion, LP spaces, basic Hilbert and Banach space theory), and 10-14 (basic function theory through the Riemann Mapping Theorem). In this book I introduce the reader to both the theory of composition operators, and the classical results that form its infrastructure. I develop the subject in a way that emphasizes its geometric content, staying as much as possible within the prerequisites set out in the twelve fundamental chapters of Rudin's book. Although much of the material on operators is quite recent, this book is not intended to be an exhaustive survey. It is, quite simply, an invitation to join in the fun. The story goes something like this.