Rings, Extensions, and Cohomology

Rings, Extensions, and Cohomology

Author: Andy R. Magid

Publisher: CRC Press

Published: 2020-09-10

Total Pages: 262

ISBN-13: 1000116816

DOWNLOAD EBOOK

"Presenting the proceedings of a conference held recently at Northwestern University, Evanston, Illinois, on the occasion of the retirement of noted mathematician Daniel Zelinsky, this novel reference provides up-to-date coverage of topics in commutative and noncommutative ring extensions, especially those involving issues of separability, Galois theory, and cohomology."


Mathematical Journals

Mathematical Journals

Author:

Publisher:

Published: 1992

Total Pages: 256

ISBN-13:

DOWNLOAD EBOOK

Provides an overview of English-language publications in the field of mathematics. ...should become a part of all academic mathematics reference collections. --CHOICE


Modules and the Structure of Rings

Modules and the Structure of Rings

Author: Golan

Publisher: CRC Press

Published: 1991-04-24

Total Pages: 298

ISBN-13: 9780824785550

DOWNLOAD EBOOK

This book offers vital background information on methods for solving hard classification problems of algebraic structures. It explains how algebraists deal with the problem of the structure of modules over rings and how they make use of these structures to classify rings.


Floer Homology, Gauge Theory, and Low-Dimensional Topology

Floer Homology, Gauge Theory, and Low-Dimensional Topology

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 318

ISBN-13: 9780821838457

DOWNLOAD EBOOK

Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in theearly 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology. The analogy between these two fields of study was further underscored by Andreas Floer's constructionof an infinite-dimensional variant of Morse theory that applies in two a priori different contexts: either to define symplectic invariants for pairs of Lagrangian submanifolds of a symplectic manifold, or to define topological This volume is based on lecture courses and advanced seminars given at the 2004 Clay Mathematics Institute Summer School at the Alfred Renyi Institute of Mathematics in Budapest, Hungary. Several of the authors have added a considerable amount of additional material tothat presented at the school, and the resulting volume provides a state-of-the-art introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds. Information for our distributors: Titles in this seriesare copublished with the Clay Mathematics Institute (Cambridge, MA).


Real and Complex Singularities

Real and Complex Singularities

Author: Victor Goryunov

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 218

ISBN-13: 0821853597

DOWNLOAD EBOOK

"This volume is a collection of papers presented at the 11th International Workshop on Real and Complex Singularities, held July 26-30, 2010, in Sao Carlos, Brazil, in honor of David Mond's 60th birthday. This volume reflects the high level of the conference discussing the most recent results and applications of singularity theory. Articles in the first part cover pure singularity theory: invariants, classification theory, and Milnor fibres. Articles in the second part cover singularities in topology and differential geometry, as well as algebraic geometry and bifurcation theory: Artin-Greenberg function of a plane curve singularity, metric theory of singularities, symplectic singularities, cobordisms of fold maps, Goursat distributions, sections of analytic varieties, Vassiliev invariants, projections of hypersurfaces, and linearity of the Jacobian ideal."--P. [4] of cover.


Algebraic Combinatorics and the Monster Group

Algebraic Combinatorics and the Monster Group

Author: Alexander A. Ivanov

Publisher: Cambridge University Press

Published: 2023-08-17

Total Pages: 584

ISBN-13: 1009338056

DOWNLOAD EBOOK

Covering, arguably, one of the most attractive and mysterious mathematical objects, the Monster group, this text strives to provide an insightful introduction and the discusses the current state of the field. The Monster group is related to many areas of mathematics, as well as physics, from number theory to string theory. This book cuts through the complex nature of the field, highlighting some of the mysteries and intricate relationships involved. Containing many meaningful examples and a manual introduction to the computer package GAP, it provides the opportunity and resources for readers to start their own calculations. Some 20 experts here share their expertise spanning this exciting field, and the resulting volume is ideal for researchers and graduate students working in Combinatorial Algebra, Group theory and related areas.


Methods of Information Geometry

Methods of Information Geometry

Author: Shun-ichi Amari

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 220

ISBN-13: 9780821843024

DOWNLOAD EBOOK

Information geometry provides the mathematical sciences with a fresh framework of analysis. This book presents a comprehensive introduction to the mathematical foundation of information geometry. It provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, and convex analysis.