Hilbert C*-modules

Hilbert C*-modules

Author: Vladimir Markovich Manuĭlov

Publisher: American Mathematical Soc.

Published:

Total Pages: 216

ISBN-13: 9780821889664

DOWNLOAD EBOOK

Based on lectures delivered by the authors at Moscow State University, this volume presents a detailed introduction to the theory of Hilbert $C*$-modules. Hilbert $C*$-modules provide a natural generalization of Hilbert spaces arising when the field of scalars $\mathbf{C $ is replaced by an arbitrary $C*$-algebra. The general theory of Hilbert $C*$-modules appeared more than 30 years ago in the pioneering papers of W. Paschke and M. Rieffel and has proved to be a powerful tool inoperator algebras theory, index theory of elliptic operators, $K$- and $KK$-theory, and in noncommutative geometry as a whole. Alongside these applications, the theory of Hilbert $C*$-modules is interesting on its own. In this book, the authors explain in detail the basic notions and results of thetheory, and provide a number of important examples. Some results related to the authors' research interests are also included. A large part of the book is devoted to structural results (self-duality, reflexivity) and to nonadjointable operators. Most of the book can be read with only a basic knowledge of functional analysis; however, some experience in the theory of operator algebras makes reading easier.


Hilbert C*-Modules

Hilbert C*-Modules

Author: E. Christopher Lance

Publisher: Cambridge University Press

Published: 1995-03-16

Total Pages: 144

ISBN-13: 052147910X

DOWNLOAD EBOOK

Hilbert C*-modules are objects like Hilbert spaces, except that the inner product, instead of being complex valued, takes its values in a C*-algebra. The theory of these modules, together with their bounded and unbounded operators, is not only rich and attractive in its own right but forms an infrastructure for some of the most important research topics in operator algebras. This book is based on a series of lectures given by Professor Lance at a summer school at the University of Trondheim. It provides, for the first time, a clear and unified exposition of the main techniques and results in this area, including a substantial amount of new and unpublished material. It will be welcomed as an excellent resource for all graduate students and researchers working in operator algebras.


Morita Equivalence and Continuous-Trace $C^*$-Algebras

Morita Equivalence and Continuous-Trace $C^*$-Algebras

Author: Iain Raeburn

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 345

ISBN-13: 0821808605

DOWNLOAD EBOOK

A modern treatment of this complex mathematical topic for students beginning research in operator algebras as well as mathematical physicists. Topics include the algebra of compact operators, sheaves, cohomology, the Brauer group and group actions, and the imprimivity theorem. The authors assume a knowledge of C*-algebras, the Gelfand-Naimark Theorem, continuous functional calculus, positivity, and the GNS- construction. Annotation copyrighted by Book News, Inc., Portland, OR


An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space

An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space

Author: Konrad Schmüdgen

Publisher: Springer Nature

Published: 2020-07-28

Total Pages: 388

ISBN-13: 3030463664

DOWNLOAD EBOOK

This textbook provides an introduction to representations of general ∗-algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of ∗-algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded ∗-algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensätze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.


Integral Closure of Ideals, Rings, and Modules

Integral Closure of Ideals, Rings, and Modules

Author: Craig Huneke

Publisher: Cambridge University Press

Published: 2006-10-12

Total Pages: 446

ISBN-13: 0521688604

DOWNLOAD EBOOK

Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.


K-theory and C*-algebras

K-theory and C*-algebras

Author: Niels Erik Wegge-Olsen

Publisher: Oxford University Press on Demand

Published: 1993

Total Pages: 370

ISBN-13: 9780198596943

DOWNLOAD EBOOK

K-theory is often considered a complicated mathematical theory for specialists only. This book is an accessible introduction to the basics and provides detailed explanations of the various concepts required for a deeper understanding of the subject. Some familiarity with basic C*algebra theory is assumed. The book then follows a careful construction and analysis of the operator K-theory groups and proof of the results of K-theory, including Bott periodicity. Of specific interest to algebraists and geometrists, the book aims to give full instruction. No details are left out in the presentation and many instructive and generously hinted exercises are provided. Apart from K-theory, this book offers complete and self contained expositions of important advanced C*-algebraic constructions like tensor products, multiplier algebras and Hilbert modules.


Mathematical Analysis and Computing

Mathematical Analysis and Computing

Author: R. N. Mohapatra

Publisher: Springer Nature

Published: 2021-05-05

Total Pages: 661

ISBN-13: 9813346469

DOWNLOAD EBOOK

This book is a collection of selected papers presented at the International Conference on Mathematical Analysis and Computing (ICMAC 2019) held at Sri Sivasubramaniya Nadar College of Engineering, Chennai, India, from 23–24 December 2019. Having found its applications in game theory, economics, and operations research, mathematical analysis plays an important role in analyzing models of physical systems and provides a sound logical base for problems stated in a qualitative manner. This book aims at disseminating recent advances in areas of mathematical analysis, soft computing, approximation and optimization through original research articles and expository survey papers. This book will be of value to research scholars, professors, and industrialists working in these areas.


Hilbert's Fifth Problem and Related Topics

Hilbert's Fifth Problem and Related Topics

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2014-07-18

Total Pages: 354

ISBN-13: 147041564X

DOWNLOAD EBOOK

In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.


Crossed Products of $C^*$-Algebras

Crossed Products of $C^*$-Algebras

Author: Dana P. Williams

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 546

ISBN-13: 0821842420

DOWNLOAD EBOOK

The theory of crossed products is extremely rich and intriguing. There are applications not only to operator algebras, but to subjects as varied as noncommutative geometry and mathematical physics. This book provides a detailed introduction to this vast subject suitable for graduate students and others whose research has contact with crossed product $C*$-algebras. in addition to providing the basic definitions and results, the main focus of this book is the fine ideal structure of crossed products as revealed by the study of induced representations via the Green-Mackey-Rieffel machine. in particular, there is an in-depth analysis of the imprimitivity theorems on which Rieffel's theory of induced representations and Morita equivalence of $C*$-algebras are based. There is also a detailed treatment of the generalized Effros-Hahn conjecture and its proof due to Gootman, Rosenberg, and Sauvageot. This book is meant to be self-contained and accessible to any graduate student coming out of a first course on operator algebras. There are appendices that deal with ancillary subjects, which while not central to the subject, are nevertheless crucial for a complete understanding of the material. Some of the appendices will be of independent interest. to view another book by this author, please visit Morita Equivalence and Continuous-Trace $C*$-Algebras.