Handbook of High -Temperature Superconductivity

Handbook of High -Temperature Superconductivity

Author: J. Robert Schrieffer

Publisher: Springer Science & Business Media

Published: 2007-03-20

Total Pages: 627

ISBN-13: 0387687343

DOWNLOAD EBOOK

Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.


High Temperature Superconducting Compounds II

High Temperature Superconducting Compounds II

Author: Sung-Hyun Whang

Publisher:

Published: 1990

Total Pages: 534

ISBN-13:

DOWNLOAD EBOOK

The keynote speaker and half of the invited speakers elaborated on the critical current density in the oxide superconductors. Major subjects covered were weak link phenomena, flux creep and novel processing approaches, melt texturing and fabrication of wires/tapes/filaments. In concurrent sessions progress on the thin film fabrication was presented. Major trends included the epitaxial deposition of films to enhance critical current density and the deposition of films at low temperaturews.


Physical Properties of High Temperature Superconductors II

Physical Properties of High Temperature Superconductors II

Author: Donald M. Ginsberg

Publisher: World Scientific

Published: 1990

Total Pages: 720

ISBN-13: 9789810201241

DOWNLOAD EBOOK

Since the publication of Physical Properties of High Temperature Superconductors I, research in the field of high temperature superconductivity has continued at a rapid pace. Volume II will contain chapters on some of the major areas of activity which were not covered extensively in Volume I: structure, microstructure, thermodynamics, oxygen stoichiometry effects, nuclear magnetic and quadrupole resonance, Hall effect, electronic structure, and the pairing state. Like Volume I, it will present authoritative and comprehensive reviews written by recognized experts in the field. This book should be useful to all students, scientists, and engineers who desire to know more about high temperature superconductivity.


Chemistry of High Temperature Superconductors

Chemistry of High Temperature Superconductors

Author: Chintamani Nagesa Ramachandra Rao

Publisher: World Scientific

Published: 1991

Total Pages: 532

ISBN-13: 9789810208059

DOWNLOAD EBOOK

This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.


Advances in High Temperature Superconductors and their applications

Advances in High Temperature Superconductors and their applications

Author: S. MOHAN

Publisher: MJP Publisher

Published: 2019-06-20

Total Pages: 232

ISBN-13:

DOWNLOAD EBOOK

Prof. Heike Kamerlingh Onnes discovered superconductivity while measuring resistivity of mercury. Surprisingly the resistivity of mercury ceased at 4.2 K and this phenomenon was known as superconductivity. He realized the importance of this discovery in producing large magnetic fieldspl. delateIt was realized that superconductivity is in a new thermodynamic state with peculiar electric and magnetic properties. This paved the way to discover more superconductors. Simple elements such as Tin, Indium or lead showed the highest critical temperature (Tc) 7.2 K. They were called as Type 1 superconductors. Niobium-nitride was found to superconduct at 16 K at 1941 and Vanadium-silicon showed superconductive properties at 17.5 K at 1953. Nb alloys and binary or more complex compounds such as Nb3Sn (Tc – 18 K), Nb-Ti (Tc -9 K), Ga, V with Tc,23 K became type II superconductors. Thereafter, there was not much improvement in the development of superconductor although wonderful applications were expected from superconductors. After three decades, Fullerenes, like ceramic superconductors, are discovered. A decade ago MgB2 was discovered with Tc = 39 K. These superconductors were routinely produced into formof wires for producing larger magnetic fields. In all these cases cooling was effectively done by liquid Helium. A comprehensive microscopic theory of superconductivity in metals was proposed in 1957 by John Bardeen, Leon Cooper and Robert Schrieffer (the so-called “BCS” theory) for which they received the Nobel Prize in Physics. In a major breakthrough, George Bednorz and Karl Mueller discovered a brittle ceramic superconductivity in the family of cuprates at 30 K in 1986 and a new era began. Inspired by the work of Bednorz and Mueller on high temperature superconductivity (HTS), Paul Chu and his associates at the University of Houston discovered in 1987, 123 compounds. That is, YBCO (Yttrium1- Barium2-Copper3- Oxygen7) and iso-structural RBCO (Rare-earth1-Barium2-Copper3-Oxygen7) have a Tc of 93 K. Prior to 1987, all superconducting materials had lower critical temperatures (Tc’s) and therefore functioned only at temperatures near the boiling point of liquid helium (4.2 K) or liquid hydrogen (20.28 K), with the highest being Nb3Ge at 23 K. They were known as low temperature superconductors. YBCO was the first material to become superconducting above 77 K, (boiling point of liquid nitrogen) and subsequently a series of high temperature superconducting materials were discovered. These superconducting materials are widely known as High temperature superconductors as these Tc’s exceeded the limit prescribed by BCS theory. HTSCs are potentially valuable as liquid nitrogen is cheaper than liquid helium. YBCO possesses superior superconducting and physical properties. YBCO receiver coils in NMR-spectrometers have improved the resolution NMR spectrometers by a factor of 3 compared to that achievable with conventional coils. Paul Chu’s group holds the current Tc-record of 164 K in the mercury barium based cuprate superconductor under pressure. Their work led to a rapid succession of new high temperature superconducting materials, ushering in a new era in material science, chemistry and technology. Added to this the structure of Bi2Sr2Ca2Cu2O10(BiSCCO) high temperature superconductive compound having T= 110 K was reported. In 1993, mercuric-cuprates, perovskite ceramic superconductors with the transition temperatures Tc =138 K was also reported.


Introduction to High-Temperature Superconductivity

Introduction to High-Temperature Superconductivity

Author: Thomas Sheahen

Publisher: Springer Science & Business Media

Published: 2006-02-24

Total Pages: 578

ISBN-13: 0306470616

DOWNLOAD EBOOK

Drawing from physics, mechanical engineering, electrical engineering, ceramics, and metallurgy, high-temperature superconductivity (HTSC) spans nearly the entire realm of materials science. This volume presents each of those disciplines at an introductory level, such that readers will ultimately be able to read the literature in the field.


Physics and Materials Science of High Temperature Superconductors, II

Physics and Materials Science of High Temperature Superconductors, II

Author: R. Kossowsky

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 798

ISBN-13: 9401124620

DOWNLOAD EBOOK

Physics and Materials Science of High Temperature Superconductors, II represents the results of a fruitful dialogue between physicists and materials scientists which took place under the auspices of a NATO Advanced Study Institute in Porto Carras, Greece, between 18 and 31 August, 1991. It builds on and carries forward the success of NATO ASI 181 published in 1990. The theoretical side of the discussions reveal the basic premise of the phenomenological and Ginzburg-Landau theories of superconductivity, the implications of short coherence length, long penetration depth, the melting of flux lattices, and other matters, while the materials science includes discussions of microstructures, local inhomogeneities, deviations from ideal chemistry, the effects of systematic errors in materials preparation, the definition of imperfections, and the utilization of common materials analysis techniques. The reader will be made aware of the potential significance of Angstrom scale structural and chemical details, and the need to consider basic theoretical concepts when designing procedures to process viable, solid conductors, specifically the effects of oxygen stoichiometry and deviations from it, as well as the microstructural demands on pinning in the light of very short coherence lengths.


High-Temperature Superconducting Materials Science and Engineering

High-Temperature Superconducting Materials Science and Engineering

Author: Donglu Shi

Publisher: Elsevier

Published: 1995-02-20

Total Pages: 498

ISBN-13: 0080534171

DOWNLOAD EBOOK

This book explores the fascinating field of high-temperature superconductivity. Basic concepts–including experimental techniques and theoretical issues–are discussed in a clear, systematic manner. In addition, the most recent research results in the measurements, materials synthesis and processing, and characterization of physical properties of high-temperature superconductors are presented. Researchers and students alike can use this book as a comprehensive introduction not only to superconductivity but also to materials-related research in electromagnetic ceramics. Special features of the book: presents recent developments in vortex-state properties, defects characterization, and phase equilibrium introduces basic concepts for experimental techniques at low temperatures and high magnetic fields provides a valuable reference for materials-related research discusses potential industrial applications of high-temperature superconductivity includes novel processing technologies for thin film and bulk materials suggests areas of research and specific problems whose solution can make high-Tc superconductors a practical reality


Processing of High-Temperature Superconductors at High Strain

Processing of High-Temperature Superconductors at High Strain

Author: A.G. Mamalis

Publisher: CRC Press

Published: 2019-04-23

Total Pages: 256

ISBN-13: 0429524668

DOWNLOAD EBOOK

The discovery of high-temperature superconductivity [1986] by Bendnorz and Muller in the La-BA-Cu-O system resulted in very extensive research work about the discovery and synthesis of other high-temperature superconductors, such as Y-BA-Cu-O and Bi-Sr-Ca-Cu-O. These new superconducting materials, possessing superconductivity above liquid nitrogen


High Temperature Superconductivity 2

High Temperature Superconductivity 2

Author: Anant V. Narlikar

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 585

ISBN-13: 3662077647

DOWNLOAD EBOOK

In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.