Lightweight Aggregate Concrete - Codes and standards

Lightweight Aggregate Concrete - Codes and standards

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 1999-08-01

Total Pages: 47

ISBN-13: 2883940444

DOWNLOAD EBOOK

Part 1 – Recommended extensions to Model Code 90 Starting in 1995 as a Joint CEB/FIP Working Group on Lightweight Aggregate Concrete (LWAC), the group was after the merger of CEB and FIP attached to the new fib Commission 8 Concrete. As a background for an extension of the CEB/FIP Model Code 1990 (MC 90) it delivered firstly Bulletin 4. Similarly to what has been done before in the field of High Strength / High Performance Concrete the present guide identifies the lacunae in the existing MC90 and proposes supplementary or alternative solutions to be applied for lightweight aggregate concretes. In order to facilitate its use the report is edited in two columns following the numbering of the CEB-FIP Model Code 1990. The group has given preference to topics of practical importance for LWAC structures, and for which reliable information is available. Justifications of the proposed extensions are to be found in the references to each section. Part 2 – Identification of research needs The technical report identifies the research needs resulting from those clauses of MC 90 which need amendment, and for which more basic research should provide a better understanding of mechanical, physical and chemical processes. Part 3 – Application of lightweight aggregate concrete The state-of-art report documents 33 application examples of projects world-wide. Twenty-eight two-page and five one-page presentations aim to explain the motivation for adopting this technology and report on the design considerations and codes applied, the practical experience during design and construction, the results obtained and the infield performance; for each example references list the literature where more detailed information can be found.


High-Strength Concrete

High-Strength Concrete

Author: Michael A. Caldarone

Publisher: CRC Press

Published: 2014-04-21

Total Pages: 192

ISBN-13: 1498718280

DOWNLOAD EBOOK

This practical book from a highly experienced author presents clearly the means and methods for designing, producing and using high-strength concrete. High-strength concrete offers many benefits. Higher compressive strengths allow for a reduction in the cross-sectional dimensions of columns and walls in buildings. Its greater stiffness allows for increasing building heights while controlling sway and occupant comfort. Civil structures such as bridges have benefited from greater span lengths, shallower beam sections, wider girder spacing, and extended service life. Illustrated with real life examples, through documented case histories, High-Strength Concrete will be a valuable resource for contractors, producers, inspection agencies, as well as engineers and researchers.


Constitutive Modelling of High Strength/high Performance Concrete

Constitutive Modelling of High Strength/high Performance Concrete

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2008-01-01

Total Pages: 134

ISBN-13: 2883940827

DOWNLOAD EBOOK

High Strength/High Performance Concrete (HSC/HPC) continues to be the object of particular interest and extensive research, and its use in construction is increasing continuously. fib Bulletin 42 summarises the available information on the material behaviour of HSC/HPC, and develops a set of code-type constitutive relations as an extension of CEB-FIP Model Code 1990. Literature on experimental data and international guidelines, standards and recommendations were reviewed, and already-existing constitutive relations and models were evaluated. In addition to a number of material laws chosen and adjusted for this report, some new constitutive relations were developed based on the collected data. The criteria for the choice of the existing relations as well as the development of the new constitutive relations involved their simplicity and operationality (code-type mathematical formulations). Furthermore, they had to be physically sound and if possible describe the behaviour of both high-performance and normal strength concretes by a unique relation. Finally, compliance with the specifications given in the CEB-FIP Model Code 1990 was examined. This State-of-art report is intended for engineers and represents a summary of the relevant knowledge available to and possessed by the members of the Task Group at the time of its drafting.