High Speed Flow Separation Ahead of Finite Span Steps

High Speed Flow Separation Ahead of Finite Span Steps

Author: Louis G. Kaufman

Publisher:

Published: 1978

Total Pages: 80

ISBN-13:

DOWNLOAD EBOOK

Detailed surface heat transfer data, oil flow, and schlieren photographs are presented for high speed flow separation ahead of finite span, forward facing steps on flat plates. Step spans were varied from three to ten times as large as the step height, and the step heights are three to four times larger than the undisturbed turbulent boundary layer thickness. Reynolds numbers, based on plate length, were approximately 15 million for both Mach 4.75 and Mach 5.04 local undisturbed flows over the flat plate surface. For these test conditions, the maximum extent of separation ahead of the step is approximately 4.4 times as large as the step height independent of step span, and peak heating rates were measured that are more than six to eight times larger than the undisturbed flow heating rates. Peak heating on the plate surface occurs slightly upstream and approximately 1/2 step height inboard of the outboard sides of the steps; the increase in peak heat transfer coefficients over the undisturbed flow values decreases with increasing step span. In addition to presenting the detailed surface heat transfer data, a plausible theoretical analysis is presented for calculating the region of turbulent boundary layer separation ahead of these finite span steps.


Turbulent Shear-Layer/Shock-Wave Interactions

Turbulent Shear-Layer/Shock-Wave Interactions

Author: J. Delery

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 434

ISBN-13: 3642827705

DOWNLOAD EBOOK

It was on a proposal of the late Professor Maurice Roy, member of the French Academy of Sciences, that in 1982, the General Assembly of the International Union of Theoretical and Applied Mechanics decided to sponsor a symposium on Turbulent Shear-Layer/Shock-Wave Interactions. This sympo sium might be arranged in Paris -or in its immediate vicinity-during the year 1985. Upon request of Professor Robert Legendre, member of the French Academy of Sciences, the organization of the symposium might be provided by the Office National d'Etudes et de Recherches Aerospatiales (ONERA). The request was very favorably received by Monsieur l'Ingenieur General Andre Auriol, then General Director of ONERA. The subject of interactions between shock-waves and turbulent dissipative layers is of considerable importance for many practical devices and has a wide range of engineering applications. Such phenomena occur almost inevitably in any transonic or supersonic flow and the subject has given rise to an important research effort since the advent of high speed fluid mechanics, more than forty years ago. However, with the coming of age of modern computers and the development of new sophisticated measurement techniques, considerable progress has been made in the field over the past fifteen years. The aim of the symposium was to provide an updated status of the research effort devoted to shear layer/shock-wave interactions and to present the most significant results obtained recently.


Government Reports Annual Index

Government Reports Annual Index

Author:

Publisher:

Published: 1979

Total Pages: 948

ISBN-13:

DOWNLOAD EBOOK

Sections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.


High Performance Computing in Science and Engineering ́15

High Performance Computing in Science and Engineering ́15

Author: Wolfgang E. Nagel

Publisher: Springer

Published: 2016-02-05

Total Pages: 701

ISBN-13: 331924633X

DOWNLOAD EBOOK

This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.