High-Performance Polymers for Engineering-Based Composites presents a selection of investigations and innovative research in polymer chemistry and advanced materials. The book includes case studies in the field of nanocomposites. The volume provides coverage of new research in polymer science and engineering with applications in chemical engineerin
This book describes advances in synthesis, processing, and technology of environmentally friendly polymers generated from renewable resources. With contents based on a wide range of functional monomers and contributions from eminent researchers, this volume demonstrates the design, synthesis, properties and applications of plant oil based polymers, presenting an elaborate review of acid mediated polymerization techniques for the generation of green polymers. Chemical engineers are provided with state-of-the-art information that acts to further progress research in this direction.
"High Performance Polymers and Their Nanocomposites" fasst die unzähligen Forschungsergebnisse aus der jüngsten Zeit im Bereich der Hochleistungspolymere zusammen, u. a. Nanokomposite auf Basis von Hochleistungspolymeren, Flüssigkristallpolymere, Polyamid 4, 6, Polyamidimide, Polyacrylamide, Komposite auf Basis von Polyacrylamiden für verschiedene Anwendungen, Polybenzimidazole, Polycyclohexylen-Dimethylterephthalate, Polyetheretherketone, Polyetherimide, Polyetherketoneketone, Polyetherfulfone, Polyphenylensulfide, Polyphenylsulfone, Polyphthalamide, Polysulfone, eigenverstärkte Polyphenylene, thermoplastische Polyimide.
Approaching the material from a chemistry and engineering perspective, High Performance Polymers presents the most reliable and current data available about state-of-the-art polymerization, fabrication, and application methods of high performance industrial polymers. Chapters are arranged according to the chemical constitution of the individual classes, beginning with main chain carbon-carbon polymers and leading to ether-containing, sulfur-containing, and so on. Each chapter follows an easily readable template, provides a brief overview and history of the polymer, and continues on to such sub-topics as monomers; polymerization and fabrication; properties; fabrication methods; special additives; applications; suppliers and commercial grades; safety; and environmental impact and recycling. High Performance Polymers brings a wealth of up-to-date, high performance polymer data to you library, in a format that allows for either a fast fact-check or more detailed study. In this new edition the data has been fully updated to reflect all developments since 2008, particularly in the topics of monomers, synthesis of polymers, special polymer types, and fields of application. - Presents the state-of-the-art polymerization, fabrication and application methods of high performance industrial polymers - Provides fundamental information for practicing engineers working in industries that develop advanced applications (including electronics, automotive and medical) - Discusses environmental impact and recycling of polymers
Phthalonitrile Resins and Composites: Properties and Applications summarizes the latest research on these polymers, providing information that enables materials scientists and engineers to deploy these polymers in the real world. The book gives details on synthesis and preparation techniques for key phthalonitrile monomers. All curing techniques are discussed, along with blends and copolymers of phthalonitrile with other polymeric materials, such as epoxy, benzoxazine and bismaleimide. Fiber and particle based phthalonitrile micro and nanocomposites are also discussed, along with their potential applications in lightweight automobiles, ships, oil rigs, aircraft, wind blades, high temperature bearings, valves, battery and electronic casings, fire resistant textiles, and more. - Introduces the subject of phthalonitrile polymers and their composites - Provides precise information on the synthesis, preparation and curing techniques for phthalonitrile polymers - Discusses developments in key application areas that are intended to facilitate and stimulate real world applications of these materials
Since synthetic plastics derived from fossil resources are mostly non-biodegradable, many academic and industrial researchers have shifted their attention toward bio-based materials, which are more eco-friendly.Bio-Based Composites for High-Performance Materials: From Strategy to Industrial Application provides an overview of the state-of-art in bi
According to Johann Wolfgang Von Goethe's (1740-1832) Mineralogy and Geology, "The history of science is science." A sesquicentennial later, one may state that the history of high performance polymers is the science of these important engineering polymers. Many of the inventors of these superior materials of construction have stood on the thresholds of the new and have recounted their experiences (trials, tribulations and satisfactions) in the symposium and in their chapters in this book. Those who have not accepted the historical approach in the past, should now recognize the value of the historical viewpoint for studying new developments, such as general purpose polymers and, to a greater degree, the high performance polymers. To put polymer science into its proper perspective, its worth recalling that historically, the ages of civilization have been named according to the materials that dominated that period. First there was the Stone Age eventually followed by the Tin, Bronze, Iron and Steel Ages. Today many historians consider us living in the Age of Synthetics: Polymers, Fibers, Plastics, Elastomers, Films, Coatings, Adhesives, etc. It is also interesting to note that in the early 1980's, Lord Todd, then President of the Royal Society of Chemistry was asked what has been chemistry's biggest contribution to society. He felt that despite all the marvelous medical advances, chemistry's biggest contribution was the development of polymeri zation. Man's knowledge of polymer science is so new that Professor Herman F.
Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications explains how polymer-based smart composites and nanocomposites can be prepared and utilized for novel optical, sensor and energy-related applications. The book begins with an introductory section on the fundamentals of smart polymer composites, including structure-property relationships and conjugated polymers. Other sections examine optical applications, including the use of polymer-based smart composites for luminescent solar concentrators, electro-chromic applications, light conversion applications, ultraviolet shielding applications, LED encapsulation applications, sensor applications, including gas-sensing, strain sensing, robotics and tactile sensors, with final sections covering energy-related applications, including energy harvesting, conversion, storage, vibrational energy harvesting, and more. This is an essential guide for researchers, scientists and advanced students in smart polymers and materials, polymer science, composites, nanocomposites, electronics and materials science. It is also a valuable book for scientists, R&D professionals and engineers working with products that could utilize smart polymer composites. - Provides thorough coverage of the latest pioneering research in the field of polymer-based smart composites - Offers an applications-oriented approach, enabling the reader to understand state-of-the-art optical, sensor and energy applications - Includes an in-depth introductory section, covering important aspects such as structure-property relationships and the role of conjugated polymers
Manufacturing of Nanocomposites with Engineering Plastics collates recent research findings on the manufacturing, properties, and applications of nanocomposites with engineering plastics in one comprehensive volume. The book specifically examines topics of engineering plastics, rheology, thermo-mechanical properties, wear, flame retardancy, modeling, filler surface modification, and more. It represents a ready reference for managers and scholars working in the areas of polymer and nanocomposite materials science, both in industry and academia, and provides introductory information for people new to the field. - Provides a comprehensive review of the most recent research findings - A single one-stop ready reference that assimilates knowledge on the development of nanocomposites with engineering plastics - Contributions from leading experts in the field - Provides examples of applications that will help with material selection - Chapters are designed to provide not only introductory information, but also to lead the reader to more advanced characterization tools
This book describes advances in synthesis, processing, and technology of environmentally friendly polymers generated from renewable resources. With contents based on a wide range of functional monomers and contributions from eminent researchers, this volume demonstrates the design, synthesis, properties and applications of plant oil based polymers, presenting an elaborate review of acid mediated polymerization techniques for the generation of green polymers. Chemical engineers are provided with state-of-the-art information that acts to further progress research in this direction.