This book describes the fundamentals of data acquisition systems, how they enable users to sample signals that measure real physical conditions and convert the resulting samples into digital, numeric values that can be analyzed by a computer. The author takes a problem-solving approach to data acquisition, providing the tools engineers need to use the concepts introduced. Coverage includes sensors that convert physical parameters to electrical signals, signal conditioning circuitry to convert sensor signals into a form that can be converted to digital values and analog-to-digital converters, which convert conditioned sensor signals to digital values. Readers will benefit from the hands-on approach, culminating with data acquisition projects, including hardware and software needed to build data acquisition systems.
This book serves as a practical guide for practicing engineers who need to design embedded systems for high-speed data acquisition and control systems. A minimum amount of theory is presented, along with a review of analog and digital electronics, followed by detailed explanations of essential topics in hardware design and software development. The discussion of hardware focuses on microcontroller design (ARM microcontrollers and FPGAs), techniques of embedded design, high speed data acquisition (DAQ) and control systems. Coverage of software development includes main programming techniques, culminating in the study of real-time operating systems. All concepts are introduced in a manner to be highly-accessible to practicing engineers and lead to the practical implementation of an embedded board that can be used in various industrial fields as a control system and high speed data acquisition system.
Racecar data acquisition used to be limited to well-funded teams in high-profile championships. Today, the cost of electronics has decreased dramatically, making them available to everyone. But the cost of any data acquisition system is a waste of money if the recorded data is not interpreted correctly. This book, updated from the best-selling 2008 edition, contains techniques for analyzing data recorded by any vehicle's data acquisition system. It details how to measure the performance of the vehicle and driver, what can be learned from it, and how this information can be used to advantage next time the vehicle hits the track. Such information is invaluable to racing engineers and managers, race teams, and racing data analysts in all motorsports. Whether measuring the performance of a Formula One racecar or that of a road-legal street car on the local drag strip, the dynamics of vehicles and their drivers remain the same. Identical analysis techniques apply. Some race series have restricted data logging to decrease the team’s running budgets. In these cases it is extremely important that a maximum of information is extracted and interpreted from the hardware at hand. A team that uses data more efficiently will have an edge over the competition. However, the ever-decreasing cost of electronics makes advanced sensors and logging capabilities more accessible for everybody. With this comes the risk of information overload. Techniques are needed to help draw the right conclusions quickly from very large data sets. In addition to updates throughout, this new edition contains three new chapters: one on techniques for analyzing tire performance, one that provides an introduction to metric-driven analysis, a technique that is used throughout the book, and another that explains what kind of information the data contains about the track.
This comprehensive new handbook is a one-stop engineering reference covering data converter fundamentals, techniques, and applications. Beginning with the basic theoretical elements necessary for a complete understanding of data converters, the book covers all the latest advances made in this changing field. Details are provided on the design of high-speec ADCs, high accuracy DACs and ADCs, sample-and-hold amplifiers, voltage sources and current reference,noise-shaping coding, sigma-delta converters, and much more.
The book is intended to be a collection of contributions providing a bird’s eye view of some relevant multidisciplinary applications of data acquisition. While assuming that the reader is familiar with the basics of sampling theory and analog-to-digital conversion, the attention is focused on applied research and industrial applications of data acquisition. Even in the few cases when theoretical issues are investigated, the goal is making the theory comprehensible to a wide, application- oriented, audience.
Introduction to Data Acquisition & Control; Analog and Digital Signals; Signal Conditioning; The Personal Computer for Real Time Work; Plug-in Data Acquisition Boards; Serial Data Communications; Distributed & Standalone Loggers/Controllers; IEEE 488 Standard; Ethernet & LAN Systems; The Universal Serial Bus (USB); Specific Techniques; The PCMCIA Card; Appendix A: Glossary; Appendix B: IBM PC Bus Specifications; Appendix C: Review of the Intel 8255 PPI Chip; Appendix D: Review of the Intel 8254 Timer-Counter Chip; Appendix E: Thermocouple Tables; Appendix F: Numbers Systems; Appendix G: GPIB (IEEE-488) Mnemonics & their Definition; Appendix H: Practical Laboratories & Demonstrations; Appendix I: Command Structure & Programming.
Understand the "magic" of how optimized camshafts extract the most performance from every engine component, eliminating valvetrain guesswork. Camshafts are the coach and conductor of any four-stroke engine from early flatheads to modern Formula 1. Performance engines are amazingly sensitive to how and when the valves to the combustion chamber open and close. The valvetrain configuration and flow characteristics may change significantly between applications, but the fundamental principles are universal. This allows the language, setup, dynamics, energy, and pressure aspects of a valvetrain to be covered in a way that is just as useful for optimizing a sub-15-hp go-kart engine as it is on a 500-plus-hp street engine or modern 1,500-plus-hp NHRA Pro Stock engine. In High-Performance Cams & Valvetrains: Theory, Technology, and Selection, farm kid-turned-physicist Billy Godbold combines his quarter-century of experience with valvetrains at Comp Cams, Lunati, Crane Cams, and Edelbrock along with the techniques he uses with professional teams in NASCAR, NHRA, road racing, dirt track racing, offshore racing, and land speed racing, guiding you to think about any valvetrain system with his perspective. Often lighthearted and filled with analogies, this book endeavors to make complex concepts easy to understand without ever watering down important details. Specific configurations and applications are covered, providing techniques and examples for optimizing camshafts and the valvetrain around intakes, headers, superchargers, turbochargers, fuels, carburetors, and modern EFI applications. If you are planning or building a classic hot rod (Chevy, Ford, Chrysler, etc.), modern performance (LS, Hemi, Coyote, or Godzilla), or competition engine (road racing, circle track racing, or drag racing), these practical details show you how any valvetrain system should be modified to extract the most from every component and help you achieve your unique goals.
This workshop followed the First International Conference, which was hosted by Fermilab, on 26-28 October, 1994. That conference discussed the switch type event builder. Much intensive R&D work ensued from it, showing the importance of (1) data flow control and (2) high speed memory access on network adapters/drivers. Those two themes are involved in many networked data acquisition systems. Therefore, “Networked Data Acquisition Systems” was selected as the theme of DAQ 96. It includes a wide variety of data acquisition system presentations from present and near-future experiments at high energy and nuclear physics laboratories.