The purpose of this book is to describe concepts related to advanced water reactors, with particular focus on Advanced Pressurized Water Reactors. It discusses the severe disadvantages which water reactors have with respect to uranium utilization. It also reveals new concepts in which the conversion ratio and the uranium utilization is improved. This interesting work includes information on various others ways used in addition to the increase in the conversion ratio. This is an informative, useful book for all nuclear scientists and engineers, and anyone who is interested in high converting water reactors.
Provides a critical review of the thorium fuel cycle: potential benefits and challenges in the thorium fuel cycle, mainly based on the latest developments at the front end of the fuel cycle, applying thorium fuel cycle options, and at the back end of the thorium fuel cycle.
Molten Salt Reactors and Thorium Energy, Second Edition is a fully updated comprehensive reference on the latest advances in MSR research and technology. Building on the successful first edition, Tom Dolan and the team of experts have fully updated the content to reflect the impressive advances from the last 5 years, ensuring this book continues to be the go-to reference on the topic. This new edition covers progress made in MSR design, details innovative experiments, and includes molten salt data, corrosion studies and deployment plans. The successful case studies section of the first edition have been removed, expanded, and fully updated, and are now published in a companion title called Global Case Studies on Molten Salt Reactors. Readers will gain a deep understanding of the advantages and challenges of MSR development and thorium fuel use, as well as step-by-step guidance on the latest in MSR reactor design. Each chapter provides a clear introduction, covers technical issues and includes examples and conclusions, while promoting the sustainability benefits throughout. - A fully updated comprehensive handbook on Molten Salt Reactors and Thorium Energy, written by a team of global experts - Covers MSR applications, technical issues, reactor types and reactor designs - Includes 3 brand new chapters which reflect the latest advances in research and technology since the first edition published - Presents case studies on molten salt reactors which aid in the transition to net zero by providing abundant clean, safe energy to complement wind and solar powe
Boiling Water Reactors, Volume Four in the JSME Series on Thermal and Nuclear Power Generation compiles the latest research in this very comprehensive reference that begins with an analysis of the history of BWR development and then moves through BWR plant design and innovations. The reader is guided through considerations for all BWR plant features and systems, including reactor internals, safety systems and plant instrumentation and control. Thermal-hydraulic aspects within a BWR core are analyzed alongside fuel analysis before comparisons of the latest BWR plant life management and maintenance technologies to promote safety and radiation protection practices are covered. The book's authors combine their in-depth knowledge and depth of experience in the field to analyze innovations and Next Generation BWRs, considering prospects for a variety of different BWRs, such as High-Conversion-BWRs, TRU-Burner Reactors and Economic Simplified BWRs. - Written by experts from the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers - Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits - Considers societal impacts and sustainability concerns and goals throughout the discussion - Explores BWR plant design, thermal-hydraulic aspects, the reactor core and plant life management and maintenance in one complete resource
This publication is a comprehensive study that reviews the current situation in a great number of applications of research reactors. It revises the contents of IAEA TECDOC-1234, The Applications of Research Reactors, giving detailed updates on each field of research reactor uses worldwide. Reactors of all sizes and capabilities can benefit from the sharing of current practices and research enabled via this updated version, which describes the requirements for practicing methods as diverse as neutron activation analysis, education and training, neutron scattering and neutron imaging, silicon doping and radioisotope production, material/fuel irradiation and testing, and some others. Many underutilised research reactors can learn how to diversify their technical capabilities, staff and potential commercial partners and users seeking research reactor services and products. The content of the publication has also been strengthened in terms of current issues facing the vast majority of research reactors by including sections describing user and customer relations as well as strategic planning considerations.
Super Light Water Reactors and Super Fast Reactors provides an overview of the design and analysis of nuclear power reactors. Readers will gain the understanding of the conceptual design elements and specific analysis methods of supercritical-pressure light water cooled reactors. Nuclear fuel, reactor core, plant control, plant stand-up and stability are among the topics discussed, in addition to safety system and safety analysis parameters. Providing the fundamentals of reactor design criteria and analysis, this volume is a useful reference to engineers, industry professionals, and graduate students involved with nuclear engineering and energy technology.
Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy provides a unique analysis of the storage and hybridization of nuclear and renewable energy. Editor Bindra and his team of expert contributors present various global methodologies to obtain the techno-economic feasibility of the integration of storage or hybrid cycles in nuclear power plants. Aimed at those studying, researching and working in the nuclear engineering field, this book offers nuclear reactor technology vendors, nuclear utilities workers and regulatory commissioners a very unique resource on how to access reliable, flexible and clean energy from variable-generation. - Presents a unique view on the technologies and systems available to integrate renewables and nuclear energy - Provides insights into the different methodologies and technologies currently available for the storage of energy - Includes case studies from well-known experts working on specific integration concepts around the world
The continued presence of highly enriched uranium (HEU) in civilian installations such as research reactors poses a threat to national and international security. Minimization, and ultimately elimination, of HEU in civilian research reactors worldwide has been a goal of U.S. policy and programs since 1978. Today, 74 civilian research reactors around the world, including 8 in the United States, use or are planning to use HEU fuel. Since the last National Academies of Sciences, Engineering, and Medicine report on this topic in 2009, 28 reactors have been either shut down or converted from HEU to low enriched uranium fuel. Despite this progress, the large number of remaining HEU-fueled reactors demonstrates that an HEU minimization program continues to be needed on a worldwide scale. Reducing the Use of Highly Enriched Uranium in Civilian Research Reactors assesses the status of and progress toward eliminating the worldwide use of HEU fuel in civilian research and test reactors.
Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivity feedbacks, and related measurement techniques. The second part helps readers to grasp the theories and practice of nuclear power plant control. It introduces control theory, nuclear reactor stability, and the operation and control of existing nuclear power plants such as a typical pressurized water reactor, a typical boiling water reactor, the prototype fast breeder reactor Monju, and the high-temperature gas-cooled test reactor (HTTR). Wherever possible, the design and operation data for these plants are provided.