Heterogeneous System Architecture

Heterogeneous System Architecture

Author: Wen-mei W. Hwu

Publisher: Morgan Kaufmann

Published: 2015-11-20

Total Pages: 207

ISBN-13: 0128008016

DOWNLOAD EBOOK

Heterogeneous Systems Architecture - a new compute platform infrastructure presents a next-generation hardware platform, and associated software, that allows processors of different types to work efficiently and cooperatively in shared memory from a single source program. HSA also defines a virtual ISA for parallel routines or kernels, which is vendor and ISA independent thus enabling single source programs to execute across any HSA compliant heterogeneous processer from those used in smartphones to supercomputers. The book begins with an overview of the evolution of heterogeneous parallel processing, associated problems, and how they are overcome with HSA. Later chapters provide a deeper perspective on topics such as the runtime, memory model, queuing, context switching, the architected queuing language, simulators, and tool chains. Finally, three real world examples are presented, which provide an early demonstration of how HSA can deliver significantly higher performance thru C++ based applications. Contributing authors are HSA Foundation members who are experts from both academia and industry. Some of these distinguished authors are listed here in alphabetical order: Yeh-Ching Chung, Benedict R. Gaster, Juan Gómez-Luna, Derek Hower, Lee Howes, Shih-Hao HungThomas B. Jablin, David Kaeli,Phil Rogers, Ben Sander, I-Jui (Ray) Sung. Provides clear and concise explanations of key HSA concepts and fundamentals by expert HSA Specification contributors Explains how performance-bound programming algorithms and application types can be significantly optimized by utilizing HSA hardware and software features Presents HSA simply, clearly, and concisely without reading the detailed HSA Specification documents Demonstrates ideal mapping of processing resources from CPUs to many other heterogeneous processors that comply with HSA Specifications


Heterogeneous Computing Architectures

Heterogeneous Computing Architectures

Author: Olivier Terzo

Publisher: CRC Press

Published: 2019-09-10

Total Pages: 315

ISBN-13: 0429680031

DOWNLOAD EBOOK

Heterogeneous Computing Architectures: Challenges and Vision provides an updated vision of the state-of-the-art of heterogeneous computing systems, covering all the aspects related to their design: from the architecture and programming models to hardware/software integration and orchestration to real-time and security requirements. The transitions from multicore processors, GPU computing, and Cloud computing are not separate trends, but aspects of a single trend-mainstream; computers from desktop to smartphones are being permanently transformed into heterogeneous supercomputer clusters. The reader will get an organic perspective of modern heterogeneous systems and their future evolution.


Heterogeneous Computing

Heterogeneous Computing

Author: Mohamed Zahran

Publisher: Morgan & Claypool

Published: 2019-05-29

Total Pages: 127

ISBN-13: 1450361005

DOWNLOAD EBOOK

If you look around you will find that all computer systems, from your portable devices to the strongest supercomputers, are heterogeneous in nature. The most obvious heterogeneity is the existence of computing nodes of different capabilities (e.g. multicore, GPUs, FPGAs, ...). But there are also other heterogeneity factors that exist in computing systems, like the memory system components, interconnection, etc. The main reason for these different types of heterogeneity is to have good performance with power efficiency. Heterogeneous computing results in both challenges and opportunities. This book discusses both. It shows that we need to deal with these challenges at all levels of the computing stack: from algorithms all the way to process technology. We discuss the topic of heterogeneous computing from different angles: hardware challenges, current hardware state-of-the-art, software issues, how to make the best use of the current heterogeneous systems, and what lies ahead. The aim of this book is to introduce the big picture of heterogeneous computing. Whether you are a hardware designer or a software developer, you need to know how the pieces of the puzzle fit together. The main goal is to bring researchers and engineers to the forefront of the research frontier in the new era that started a few years ago and is expected to continue for decades. We believe that academics, researchers, practitioners, and students will benefit from this book and will be prepared to tackle the big wave of heterogeneous computing that is here to stay.


Heterogeneous Computing with OpenCL

Heterogeneous Computing with OpenCL

Author: Benedict Gaster

Publisher: Newnes

Published: 2012-11-13

Total Pages: 309

ISBN-13: 0124058949

DOWNLOAD EBOOK

Heterogeneous Computing with OpenCL, Second Edition teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs) such as AMD Fusion technology. It is the first textbook that presents OpenCL programming appropriate for the classroom and is intended to support a parallel programming course. Students will come away from this text with hands-on experience and significant knowledge of the syntax and use of OpenCL to address a range of fundamental parallel algorithms. Designed to work on multiple platforms and with wide industry support, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, Heterogeneous Computing with OpenCL explores memory spaces, optimization techniques, graphics interoperability, extensions, and debugging and profiling. It includes detailed examples throughout, plus additional online exercises and other supporting materials that can be downloaded at http://www.heterogeneouscompute.org/?page_id=7 This book will appeal to software engineers, programmers, hardware engineers, and students/advanced students. Explains principles and strategies to learn parallel programming with OpenCL, from understanding the four abstraction models to thoroughly testing and debugging complete applications. Covers image processing, web plugins, particle simulations, video editing, performance optimization, and more. Shows how OpenCL maps to an example target architecture and explains some of the tradeoffs associated with mapping to various architectures Addresses a range of fundamental programming techniques, with multiple examples and case studies that demonstrate OpenCL extensions for a variety of hardware platforms


Improving heterogeneous system efficiency : architecture, scheduling, and machine learning

Improving heterogeneous system efficiency : architecture, scheduling, and machine learning

Author: Daniel A. Nemirovsky

Publisher:

Published: 2018

Total Pages: 179

ISBN-13:

DOWNLOAD EBOOK

Computer architects are beginning to embrace heterogeneous systems as an effective method to utilize increases in transistor densities for executing a diverse range of workloads under varying performance and energy constraints. As heterogeneous systems become more ubiquitous, architects will need to develop novel CPU scheduling techniques capable of exploiting the diversity of computational resources. In recognizing hardware diversity, state-of-the-art heterogeneous schedulers are able to produce significant performance improvements over their predecessors and enable more flexible system designs. Nearly all of these, however, are unable to efficiently identify the mapping schemes which will result in the highest system performance. Accurately estimating the performance of applications on different heterogeneous resources can provide a significant advantage to heterogeneous schedulers for identifying a performance maximizing mapping scheme to improve system performance. Recent advances in machine learning techniques including artificial neural networks have led to the development of powerful and practical prediction models for a variety of fields. As of yet, however, no significant leaps have been taken towards employing machine learning for heterogeneous scheduling in order to maximize system throughput. The core issue we approach is how to understand and utilize the rise of heterogeneous architectures, benefits of heterogeneous scheduling, and the promise of machine learning techniques with respect to maximizing system performance. We present studies that promote a future computing model capable of supporting massive hardware diversity, discuss the constraints faced by heterogeneous designers, explore the advantages and shortcomings of conventional heterogeneous schedulers, and pioneer applying machine learning to optimize mapping and system throughput. The goal of this thesis is to highlight the importance of efficiently exploiting heterogeneity and to validate the opportunities that machine learning can offer for various areas in computer architecture.


Heterogeneous Computing with OpenCL 2.0

Heterogeneous Computing with OpenCL 2.0

Author: David R. Kaeli

Publisher: Morgan Kaufmann

Published: 2015-06-18

Total Pages: 330

ISBN-13: 0128016493

DOWNLOAD EBOOK

Heterogeneous Computing with OpenCL 2.0 teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs). This fully-revised edition includes the latest enhancements in OpenCL 2.0 including: • Shared virtual memory to increase programming flexibility and reduce data transfers that consume resources • Dynamic parallelism which reduces processor load and avoids bottlenecks • Improved imaging support and integration with OpenGL Designed to work on multiple platforms, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book explores memory spaces, optimization techniques, extensions, debugging and profiling. Multiple case studies and examples illustrate high-performance algorithms, distributing work across heterogeneous systems, embedded domain-specific languages, and will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. Updated content to cover the latest developments in OpenCL 2.0, including improvements in memory handling, parallelism, and imaging support Explanations of principles and strategies to learn parallel programming with OpenCL, from understanding the abstraction models to thoroughly testing and debugging complete applications Example code covering image analytics, web plugins, particle simulations, video editing, performance optimization, and more


Cooperating Heterogeneous Systems

Cooperating Heterogeneous Systems

Author: David G. Schwartz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 216

ISBN-13: 1461522110

DOWNLOAD EBOOK

Cooperating Heterogeneous Systems provides an in-depth introduction to the issues and techniques surrounding the integration and control of diverse and independent software components. Organizations increasingly rely upon diverse computer systems to perform a variety of knowledge-based tasks. This presents technical issues of interoperability and integration, as well as philosophical issues of how cooperation and interaction between computational entities is to be realized. Cooperating systems are systems that work together towards a common end. The concepts of cooperation must be realized in technically sound system architectures, having a uniform meta-layer between knowledge sources and the rest of the system. The layer consists of a family of interpreters, one for each knowledge source, and meta-knowledge. A system architecture to integrate and control diverse knowledge sources is presented. The architecture is based on the meta-level properties of the logic programming language Prolog. An implementation of the architecture is described, a Framework for Logic Programming Systems with Distributed Execution (FLiPSiDE). Knowledge-based systems play an important role in any up-to-date arsenal of decision support tools. The tremendous growth of computer communications infrastructure has made distributed computing a viable option, and often a necessity in geographically distributed organizations. It has become clear that to take knowledge-based systems to their next useful level, it is necessary to get independent knowledge-based systems to work together, much as we put together ad hoc work groups in our organizations to tackle complex problems. The book is for scientists and software engineers who have experience in knowledge-based systems and/or logic programming and seek a hands-on introduction to cooperating systems. Researchers investigating autonomous agents, distributed computation, and cooperating systems will find fresh ideas and new perspectives on well-established approaches to control, organization, and cooperation.


Electronic System-Level HW/SW Co-Design of Heterogeneous Multi-Processor Embedded Systems

Electronic System-Level HW/SW Co-Design of Heterogeneous Multi-Processor Embedded Systems

Author: Luigi Pomante

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 270

ISBN-13: 1000795640

DOWNLOAD EBOOK

Modern electronic systems consist of a fairly heterogeneous set of components. Today, a single system can be constituted by a hardware platform, frequently composed of a mix of analog and digital components, and by several software application layers. The hardware can include several heterogeneous microprocessors (e.g. GPP, DSP, GPU, etc.), dedicated ICs (ASICs and/or FPGAs), memories, a set of local connections between the system components, and some interfaces between the system and the environment (sensors, actuators, etc.). Therefore, on the one hand, multi-processor embedded systems are capable of meeting the demand of processing power and flexibility of complex applications. On the other hand, such systems are very complex to design and optimize, so that the design methodology plays a major role in determining the success of the products. For these reasons, to cope with the increasing system complexity, the approaches typically used today are oriented towards co-design methodologies working at the higher levels of abstraction. Unfortunately, such methodologies are typically customized for the specific application, suffer of a lack of generality and still need a considerable effort when real-size project are envisioned. Therefore, there is still the need for a general methodology able to support the designer during the high-level steps of a co-design flow, enabling an effective design space exploration before tackling the low-level steps and thus committing to the final technology. This should prevent costly redesign loops.In such a context, the work described in this book, composed of two parts, aims at providing models, methodologies and tools to support each step of the co-design flow of embedded systems implemented by exploiting heterogeneous multi-processor architectures mapped on distributed systems, as well as fully integrated onto a single chip.