Hecke's Theory of Modular Forms and Dirichlet Series

Hecke's Theory of Modular Forms and Dirichlet Series

Author: Bruce C. Berndt

Publisher: World Scientific

Published: 2008

Total Pages: 150

ISBN-13: 9812706356

DOWNLOAD EBOOK

Cyber security, encompassing both information and network security, is of utmost importance in today's information age. Cyber Security Standards, Practices and Industrial Applications: Systems and Methodologies details the latest and most important advances in security standards. First, it introduces the differences between information security (covers the understanding of security requirements, classification of threats, attacks and information protection systems and methodologies) and network security (includes both security protocols as well as systems which create a security perimeter around networks for intrusion detection and avoidance). In addition, the book serves as an essential reference to students, researchers, practitioners, and consultants in the area of social media, cyber security and information, and communication technologies (ICT).


Hecke's Theory Of Modular Forms And Dirichlet Series (2nd Printing And Revisions)

Hecke's Theory Of Modular Forms And Dirichlet Series (2nd Printing And Revisions)

Author: Bruce C Berndt

Publisher: World Scientific

Published: 2007-12-31

Total Pages: 150

ISBN-13: 981447553X

DOWNLOAD EBOOK

In 1938, at the Institute for Advanced Study, E Hecke gave a series of lectures on his theory of correspondence between modular forms and Dirichlet series. Since then, the Hecke correspondence has remained an active feature of number theory and, indeed, it is more important today than it was in 1936 when Hecke published his original papers.This book is an amplified and up-to-date version of the former author's lectures at the University of Illinois at Urbana-Champaign, based on Hecke's notes. Providing many details omitted from Hecke's notes, it includes various new and important developments in recent years. In particular, several generalizations and analogues of the original Hecke theory are briefly described in this concise volume.


Analytic Methods In Number Theory: When Complex Numbers Count

Analytic Methods In Number Theory: When Complex Numbers Count

Author: Wadim Zudilin

Publisher: World Scientific

Published: 2023-08-22

Total Pages: 192

ISBN-13: 9811279330

DOWNLOAD EBOOK

There is no surprise that arithmetic properties of integral ('whole') numbers are controlled by analytic functions of complex variable. At the same time, the values of analytic functions themselves happen to be interesting numbers, for which we often seek explicit expressions in terms of other 'better known' numbers or try to prove that no such exist. This natural symbiosis of number theory and analysis is centuries old but keeps enjoying new results, ideas and methods.The present book takes a semi-systematic review of analytic achievements in number theory ranging from classical themes about primes, continued fractions, transcendence of π and resolution of Hilbert's seventh problem to some recent developments on the irrationality of the values of Riemann's zeta function, sizes of non-cyclotomic algebraic integers and applications of hypergeometric functions to integer congruences.Our principal goal is to present a variety of different analytic techniques that are used in number theory, at a reasonably accessible — almost popular — level, so that the materials from this book can suit for teaching a graduate course on the topic or for a self-study. Exercises included are of varying difficulty and of varying distribution within the book (some chapters get more than other); they not only help the reader to consolidate their understanding of the material but also suggest directions for further study and investigation. Furthermore, the end of each chapter features brief notes about relevant developments of the themes discussed.


Topics And Methods In Q-series

Topics And Methods In Q-series

Author: James Mc Laughlin

Publisher: World Scientific

Published: 2017-09-22

Total Pages: 401

ISBN-13: 9813223383

DOWNLOAD EBOOK

The book provides a comprehensive introduction to the many aspects of the subject of basic hypergeometric series. The book essentially assumes no prior knowledge but eventually provides a comprehensive introduction to many important topics. After developing a treatment of historically important topics such as the q-binomial theorem, Heine's transformation, the Jacobi triple product identity, Ramanujan's 1-psi-1 summation formula, Bailey's 6-psi-6 summation formula and the Rogers-Fine identity, the book goes on to delve more deeply into important topics such as Bailey- and WP-Bailey pairs and chains, q-continued fractions, and mock theta functions. There are also chapters on other topics such as Lambert series and combinatorial proofs of basic hypergeometric identities.The book could serve as a textbook for the subject at the graduate level and as a textbook for a topic course at the undergraduate level (earlier chapters). It could also serve as a reference work for researchers in the area.


Recent Progress On Topics Of Ramanujan Sums And Cotangent Sums Associated With The Riemann Hypothesis

Recent Progress On Topics Of Ramanujan Sums And Cotangent Sums Associated With The Riemann Hypothesis

Author: Helmut Maier

Publisher: World Scientific

Published: 2021-12-28

Total Pages: 165

ISBN-13: 9811246904

DOWNLOAD EBOOK

In this monograph, we study recent results on some categories of trigonometric/exponential sums along with various of their applications in Mathematical Analysis and Analytic Number Theory. Through the two chapters of this monograph, we wish to highlight the applicability and breadth of techniques of trigonometric/exponential sums in various problems focusing on the interplay of Mathematical Analysis and Analytic Number Theory. We wish to stress the point that the goal is not only to prove the desired results, but also to present a plethora of intermediate Propositions and Corollaries investigating the behaviour of such sums, which can also be applied in completely different problems and settings than the ones treated within this monograph.In the present work we mainly focus on the applications of trigonometric/exponential sums in the study of Ramanujan sums — which constitute a very classical domain of research in Number Theory — as well as the study of certain cotangent sums with a wide range of applications, especially in the study of Dedekind sums and a facet of the research conducted on the Riemann Hypothesis. For example, in our study of the cotangent sums treated within the second chapter, the methods and techniques employed reveal unexpected connections with independent and very interesting problems investigated in the past by R de la Bretèche and G Tenenbaum on trigonometric series, as well as by S Marmi, P Moussa and J-C Yoccoz on Dynamical Systems.Overall, a reader who has mastered fundamentals of Mathematical Analysis, as well as having a working knowledge of Classical and Analytic Number Theory, will be able to gradually follow all the parts of the monograph. Therefore, the present monograph will be of interest to advanced undergraduate and graduate students as well as researchers who wish to be informed on the latest developments on the topics treated.


The Theory Of Multiple Zeta Values With Applications In Combinatorics

The Theory Of Multiple Zeta Values With Applications In Combinatorics

Author: Minking Eie

Publisher: World Scientific

Published: 2013-05-22

Total Pages: 313

ISBN-13: 9814472654

DOWNLOAD EBOOK

This is the first book on the theory of multiple zeta values since its birth around 1994. Readers will find that the shuffle products of multiple zeta values are applied to complicated counting problems in combinatorics, and numerous interesting identities are produced that are ready to be used. This will provide a powerful tool to deal with problems in multiple zeta values, both in evaluations and shuffle relations. The volume will benefit graduate students doing research in number theory.


Development of Elliptic Functions According to Ramanujan

Development of Elliptic Functions According to Ramanujan

Author: K. Venkatachaliengar

Publisher: World Scientific

Published: 2012

Total Pages: 185

ISBN-13: 9814366455

DOWNLOAD EBOOK

This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of real and complex analysis.


Modular Forms

Modular Forms

Author: Toshitsune Miyake

Publisher: Springer Science & Business Media

Published: 2006-02-17

Total Pages: 343

ISBN-13: 3540295933

DOWNLOAD EBOOK

This book is a translation of the earlier book written by Koji Doi and the author, who revised it substantially for this English edition. It offers the basic knowledge of elliptic modular forms necessary to understand recent developments in number theory. It also treats the unit groups of quaternion algebras, rarely dealt with in books; and in the last chapter, Eisenstein series with parameter are discussed following the recent work of Shimura.


Modular forms and Hecke operators

Modular forms and Hecke operators

Author: A. N. Andrianov V. G. Zhuravlev

Publisher: American Mathematical Soc.

Published: 1995-08-28

Total Pages: 350

ISBN-13: 9780821897621

DOWNLOAD EBOOK

The concept of Hecke operators was so simple and natural that, soon after Hecke's work, scholars made the attempt to develop a Hecke theory for modular forms, such as Siegel modular forms. As this theory developed, the Hecke operators on spaces of modular forms in several variables were found to have arithmetic meaning. Specifically, the theory provided a framework for discovering certain multiplicative properties of the number of integer representations of quadratic forms by quadratic forms. Now that the theory has matured, the time is right for this detailed and systematic exposition of its fundamental methods and results. Features: The book starts with the basics and ends with the latest results, explaining the current status of the theory of Hecke operators on spaces of holomorphic modular forms of integer and half-integer weight congruence-subgroups of integral symplectic groups. Hecke operators are considered principally as an instrument for studying the multiplicative properties of the Fourier coefficients of modular forms. It is the authors' intent that Modular Forms and Hecke Operators help attract young researchers to this beautiful and mysterious realm of number theory.


Modular Forms and Hecke Operators

Modular Forms and Hecke Operators

Author: Anatoliĭ Nikolaevich Andrianov

Publisher: American Mathematical Soc.

Published: 1995

Total Pages: 346

ISBN-13: 0821802771

DOWNLOAD EBOOK

The concept of Hecke operators was so simple and natural that, soon after Hecke's work, scholars made the attempt to develop a Hecke theory for modular forms, such as Siegel modular forms. As this theory developed, the Hecke operators on spaces of modular forms in several variables were found to have arithmetic meaning. Specifically, the theory provided a framework for discovering certain multiplicative properties of the number of integer representations of quadratic forms by quadratic forms. Now that the theory has matured, the time is right for this detailed and systematic exposition of its fundamental methods and results. Modular Forms and Hecke Operators should help to attract young researchers to the beautiful and mysterious realm of number theory.