Heat and Mass Transfer in Gasoline and Diesel Engines

Heat and Mass Transfer in Gasoline and Diesel Engines

Author: Dudley Brian Spalding

Publisher: Core/Mechanical

Published: 1989

Total Pages: 766

ISBN-13:

DOWNLOAD EBOOK

The editors explain that the classical formulae and techniques for predicting heat flow do not apply to the unique conditions found in reciprocating engines. They warn the reader--presumed to be aspiring designers of more efficient and less polluting engines--that although these papers, from every country where engineering is practiced, contain nearly all the available knowledge on the subject, no definitive answers emerge, no breakthroughs loom around the next equation. The topics include the transfer of engine heat and of external heat, numerical flow simulation, applications and devices, ignition and quenching, and measurement techniques. Annotation copyrighted by Book News, Inc., Portland, OR


Internal Combustion Engines

Internal Combustion Engines

Author: Colin R. Ferguson

Publisher: John Wiley & Sons

Published: 2015-07-07

Total Pages: 474

ISBN-13: 1118533313

DOWNLOAD EBOOK

Since the publication of the Second Edition in 2001, there have been considerable advances and developments in the field of internal combustion engines. These include the increased importance of biofuels, new internal combustion processes, more stringent emissions requirements and characterization, and more detailed engine performance modeling, instrumentation, and control. There have also been changes in the instructional methodologies used in the applied thermal sciences that require inclusion in a new edition. These methodologies suggest that an increased focus on applications, examples, problem-based learning, and computation will have a positive effect on learning of the material, both at the novice student, and practicing engineer level. This Third Edition mirrors its predecessor with additional tables, illustrations, photographs, examples, and problems/solutions. All of the software is ‘open source’, so that readers can see how the computations are performed. In addition to additional java applets, there is companion Matlab code, which has become a default computational tool in most mechanical engineering programs.


Diesel Engine Transient Operation

Diesel Engine Transient Operation

Author: Constantine D. Rakopoulos

Publisher: Springer Science & Business Media

Published: 2009-03-10

Total Pages: 408

ISBN-13: 1848823754

DOWNLOAD EBOOK

Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle’s operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor driveability, and overshoot in particulate, gaseous and noise emissions. Despite the relatively large number of published papers, this very important subject has been treated in the past scarcely and only segmentally as regards reference books. Merely two chapters, one in the book Turbocharging the Internal Combustion Engine by N. Watson and M. S. Janota (McMillan Press, 1982) and another one written by D. E. Winterbone in the book The Thermodynamics and Gas Dynamics of Internal Combustion Engines, Vol. II edited by J. H. Horlock and D. E. Winterbone (Clarendon Press, 1986) are dedicated to transient operation. Both books, now out of print, were published a long time ago. Then, it seems reasonable to try to expand on these pioneering works, taking into account the recent technological advances and particularly the global concern about environmental pollution, which has intensified the research on transient (diesel) engine operation, typically through the Transient Cycles certification of new vehicles.


Combustion Engines Development

Combustion Engines Development

Author: Günter P. Merker

Publisher: Springer Science & Business Media

Published: 2011-09-24

Total Pages: 660

ISBN-13: 3642140947

DOWNLOAD EBOOK

Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.


Internal Combustion Engines

Internal Combustion Engines

Author: Giancarlo Ferrari

Publisher: Società Editrice Esculapio

Published: 2022-07-21

Total Pages: 701

ISBN-13:

DOWNLOAD EBOOK

Internal combustion engines are among the most fascinating and ingenious machines which, with their invention and continuous development, have positively influenced the industrial and social history during the last century, especially by virtue of the role played as propulsion technology par excellence used in on-road private and commercial transportation. Nowadays, the growing attention towards the de-carbonization opens up new scenarios, but IC engines will continue to have a primary role in multiple sectors: automotive, marine, offroad machinery, mining, oil & gas and rail, power generation, possibly with an increasing use of non-fossil fuels. The book is organized in monothematic chapters, starting with a presentation of the general and functional characteristics of IC engines, and then dwelling on the details of the fluid exchange processes and the definition of the layout of intake and exhaust systems, obviously including the supercharging mechanisms, and continue with the description of the injection and combustion processes, to conclude with the explanation of the formation, control and reduction of pollutant emissions and radiated noise.


FUNDAMENTALS OF INTERNAL COMBUSTION ENGINES

FUNDAMENTALS OF INTERNAL COMBUSTION ENGINES

Author: H. N. GUPTA

Publisher: PHI Learning Pvt. Ltd.

Published: 2012-12-10

Total Pages: 676

ISBN-13: 8120346807

DOWNLOAD EBOOK

Providing a comprehensive introduction to the basics of Internal Combustion Engines, this book is suitable for: Undergraduate-level courses in mechanical engineering, aeronautical engineering, and automobile engineering. Postgraduate-level courses (Thermal Engineering) in mechanical engineering. A.M.I.E. (Section B) courses in mechanical engineering. Competitive examinations, such as Civil Services, Engineering Services, GATE, etc. In addition, the book can be used for refresher courses for professionals in auto-mobile industries. Coverage Includes Analysis of processes (thermodynamic, combustion, fluid flow, heat transfer, friction and lubrication) relevant to design, performance, efficiency, fuel and emission requirements of internal combustion engines. Special topics such as reactive systems, unburned and burned mixture charts, fuel-line hydraulics, side thrust on the cylinder walls, etc. Modern developments such as electronic fuel injection systems, electronic ignition systems, electronic indicators, exhaust emission requirements, etc. The Second Edition includes new sections on geometry of reciprocating engine, engine performance parameters, alternative fuels for IC engines, Carnot cycle, Stirling cycle, Ericsson cycle, Lenoir cycle, Miller cycle, crankcase ventilation, supercharger controls and homogeneous charge compression ignition engines. Besides, air-standard cycles, latest advances in fuel-injection system in SI engine and gasoline direct injection are discussed in detail. New problems and examples have been added to several chapters. Key Features Explains basic principles and applications in a clear, concise, and easy-to-read manner Richly illustrated to promote a fuller understanding of the subject SI units are used throughout Example problems illustrate applications of theory End-of-chapter review questions and problems help students reinforce and apply key concepts Provides answers to all numerical problems


High Bandwidth Heat Transfer Measurements in an Internal Combustion Engine Under Low Load and Motored Conditions

High Bandwidth Heat Transfer Measurements in an Internal Combustion Engine Under Low Load and Motored Conditions

Author:

Publisher:

Published: 2003

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Heat transfer between the working fluid and the combustion chamber in an internal combustion engine is one of the most important parameters for cycle simulation and analysis. The heat transfer influences the in-cylinder pressure and temperature levels, engine efficiency, and exhaust emissions. Most of the current research carried out on combustion chambers focuses on gas temperature measurement by Coherent Anti-Stokes Raman Scattering (CARS) and heat transfer measurement by thermocouples. Heat transfer measurement by thermocouples leads to poor bandwidths and large uncertainties. A more advanced experimental technique for heat transfer measurement used in gas-turbine engine research, platinum thin film resistance thermometers, was recently employed in a single cylinder engine. Heat transfer rate measurements were successfully obtained on the piston surface and cylinder head exposed to the combustion gases. The thin film gauge system has a frequency response of around 100kHz and therefore can track the heat transfer rate changes on the piston surface and cylinder head adequately. Measurements taken with the engine motored and at low load are presented and discussed. (13 figures, 12 refs.).