Harmonic Analysis on Spaces of Homogeneous Type

Harmonic Analysis on Spaces of Homogeneous Type

Author: Donggao Deng

Publisher: Springer Science & Business Media

Published: 2008-11-19

Total Pages: 167

ISBN-13: 354088744X

DOWNLOAD EBOOK

This book could have been entitled “Analysis and Geometry.” The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated,acenturyago,withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ̈ in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L [0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function.


Harmonic Analysis on Commutative Spaces

Harmonic Analysis on Commutative Spaces

Author: Joseph Albert Wolf

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 408

ISBN-13: 0821842897

DOWNLOAD EBOOK

This study starts with the basic theory of topological groups, harmonic analysis, and unitary representations. It then concentrates on geometric structure, harmonic analysis, and unitary representation theory in commutative spaces.


Geometric and Harmonic Analysis on Homogeneous Spaces

Geometric and Harmonic Analysis on Homogeneous Spaces

Author: Ali Baklouti

Publisher: Springer Nature

Published: 2019-08-31

Total Pages: 227

ISBN-13: 3030265625

DOWNLOAD EBOOK

This book presents a number of important contributions focusing on harmonic analysis and representation theory of Lie groups. All were originally presented at the 5th Tunisian–Japanese conference “Geometric and Harmonic Analysis on Homogeneous Spaces and Applications”, which was held at Mahdia in Tunisia from 17 to 21 December 2017 and was dedicated to the memory of the brilliant Tunisian mathematician Majdi Ben Halima. The peer-reviewed contributions selected for publication have been modified and are, without exception, of a standard equivalent to that in leading mathematical periodicals. Highlighting the close links between group representation theory and harmonic analysis on homogeneous spaces and numerous mathematical areas, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics, the book is intended for researchers and students working in the area of commutative and non-commutative harmonic analysis as well as group representations.


Operator Theory and Harmonic Analysis

Operator Theory and Harmonic Analysis

Author: Alexey N. Karapetyants

Publisher: Springer Nature

Published: 2021-09-27

Total Pages: 585

ISBN-13: 3030774937

DOWNLOAD EBOOK

This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.


Groupoid Metrization Theory

Groupoid Metrization Theory

Author: Dorina Mitrea

Publisher: Springer Science & Business Media

Published: 2012-12-15

Total Pages: 486

ISBN-13: 0817683976

DOWNLOAD EBOOK

The topics in this research monograph are at the interface of several areas of mathematics such as harmonic analysis, functional analysis, analysis on spaces of homogeneous type, topology, and quasi-metric geometry. The presentation is self-contained with complete, detailed proofs, and a large number of examples and counterexamples are provided. Unique features of Metrization Theory for Groupoids: With Applications to Analysis on Quasi-Metric Spaces and Functional Analysis include: * treatment of metrization from a wide, interdisciplinary perspective, with accompanying applications ranging across diverse fields; * coverage of topics applicable to a variety of scientific areas within pure mathematics; * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * coverage of topics applicable to a variety of scientific areas within pure mathematics; * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties.


A Course in Abstract Harmonic Analysis

A Course in Abstract Harmonic Analysis

Author: Gerald B. Folland

Publisher: CRC Press

Published: 2016-02-03

Total Pages: 317

ISBN-13: 1498727158

DOWNLOAD EBOOK

A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant resul


Harmonic Analysis on Spaces of Homogeneous Type

Harmonic Analysis on Spaces of Homogeneous Type

Author: Donggao Deng

Publisher:

Published: 2009

Total Pages: 0

ISBN-13: 9788354088745

DOWNLOAD EBOOK

The dramatic changes that came about in analysis during the twentieth century are truly amazing. In the thirties, complex methods and Fourier series played a seminal role. After many improvements, mostly achieved by the Calderón-Zygmund school, the action today is taking place in spaces of homogeneous type. No group structure is available and the Fourier transform is missing, but a version of harmonic analysis is still available. Indeed the geometry is conducting the analysis. The authors succeed in generalizing the construction of wavelet bases to spaces of homogeneous type. However wavelet bases are replaced by frames, which in many applications serve the same purpose.


Causal Symmetric Spaces

Causal Symmetric Spaces

Author: Gestur Olafsson

Publisher: Academic Press

Published: 1996-09-11

Total Pages: 303

ISBN-13: 0080528724

DOWNLOAD EBOOK

This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces


Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group

Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group

Author: Valery V. Volchkov

Publisher: Springer

Published: 2011-11-30

Total Pages: 0

ISBN-13: 9781447122838

DOWNLOAD EBOOK

The theory of mean periodic functions is a subject which goes back to works of Littlewood, Delsarte, John and that has undergone a vigorous development in recent years. There has been much progress in a number of problems concerning local - pects of spectral analysis and spectral synthesis on homogeneous spaces. The study oftheseproblemsturnsouttobecloselyrelatedtoavarietyofquestionsinharmonic analysis, complex analysis, partial differential equations, integral geometry, appr- imation theory, and other branches of contemporary mathematics. The present book describes recent advances in this direction of research. Symmetric spaces and the Heisenberg group are an active ?eld of investigation at 2 the moment. The simplest examples of symmetric spaces, the classical 2-sphere S 2 and the hyperbolic plane H , play familiar roles in many areas in mathematics. The n Heisenberg groupH is a principal model for nilpotent groups, and results obtained n forH may suggest results that hold more generally for this important class of Lie groups. The purpose of this book is to develop harmonic analysis of mean periodic functions on the above spaces.


Harmonic Analysis in Euclidean Spaces, Part 2

Harmonic Analysis in Euclidean Spaces, Part 2

Author: Guido Weiss

Publisher: American Mathematical Soc.

Published: 1979

Total Pages: 448

ISBN-13: 0821814389

DOWNLOAD EBOOK

Contains sections on Several complex variables, Pseudo differential operators and partial differential equations, Harmonic analysis in other settings: probability, martingales, local fields, and Lie groups and functional analysis.