Handbook of Spatial Epidemiology explains how to model epidemiological problems and improve inference about disease etiology from a geographical perspective. Top epidemiologists, geographers, and statisticians share interdisciplinary viewpoints on analyzing spatial data and space-time variations in disease incidences. These analyses can provide imp
Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters.The handbook begins with a historical intro
This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science.
Infectious Disease Epidemiology is a concise reference guide which provides trainees and practicing epidemiologists with the information that they need to understand the basic concepts necessary for working in this specialist area. Divided into two sections, part one comprehensively covers the basic principles and methods relevant to the study of infectious disease epidemiology. It is organised in order of increasing complexity, ranging from a general introduction to subjects such as mathematical modelling and sero-epidemiology. Part two examines key major infectious diseases that are of global significance. Grouped by their route of transmission for ease of reference, they include diseases that present a particular burden or a high potential for causing mortality. This practical guide will be essential reading for postgraduate students in infectious disease epidemiology, health protection trainees, and practicing epidemiologists.
Progressively more and more attention has been paid to how location affects health outcomes. The area of disease mapping focusses on these problems, and the Bayesian paradigm has a major role to play in the understanding of the complex interplay of context and individual predisposition in such studies of disease. Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies. Features: Review of R graphics relevant to spatial health data Overview of Bayesian methods and Bayesian hierarchical modeling as applied to spatial data Bayesian Computation and goodness-of-fit Review of basic Bayesian disease mapping models Spatio-temporal modeling with MCMC and INLA Special topics include multivariate models, survival analysis, missing data, measurement error, variable selection, individual event modeling, and infectious disease modeling Software for fitting models based on BRugs, Nimble, CARBayes and INLA Provides code relevant to fitting all examples throughout the book at a supplementary website The book fills a void in the literature and available software, providing a crucial link for students and professionals alike to engage in the analysis of spatial and spatio-temporal health data from a Bayesian perspective using R. The book emphasizes the use of MCMC via Nimble, BRugs, and CARBAyes, but also includes INLA for comparative purposes. In addition, a wide range of packages useful in the analysis of geo-referenced spatial data are employed and code is provided. It will likely become a key reference for researchers and students from biostatistics, epidemiology, public health, and environmental science.
This is a new paperback edition of the well received text Spatial Epid emiology: Methods and Applications. It is an easy to read, clear and c oncise exploration of the field of geographical variations in diseases . Especially with respect to variations in environmental exposures at the small-area scale this book gives an authoriative account of curren t practice and developments. The recent and rapid expansion of the fie ld looks set to continue in line with growing public, governmental and media concern about environmental and health issues, and the scientif ic need to understand and explain the effects of environmental polluta nts on health.
The widespread use of Geographical Information Systems (GIS) has significantly increased the demand for knowledge about spatial analytical techniques across a range of disciplines. As growing numbers of researchers realise they are dealing with spatial data, the demand for specialised statistical and mathematical methods designed to deal with spatial data is undergoing a rapid increase. Responding to this demand, The Handbook of Spatial Analysis is a comprehensive and authoritative discussion of issues and techniques in the field of Spatial Data Analysis. Its principal focus is on: • why the analysis of spatial data needs separate treatment • the main areas of spatial analysis • the key debates within spatial analysis • examples of the application of various spatial analytical techniques • problems in spatial analysis • areas for future research Aimed at an international audience of academics, The Handbook of Spatial Analysis will also prove essential to graduate level students and researchers in government agencies and the private sector.
In many statistical applications, scientists have to analyze the occurrence of observed clusters of events in time or space. Scientists are especially interested in determining whether an observed cluster of events has occurred by chance if it is assumed that the events are distributed independently and uniformly over time or space. Scan statistics have relevant applications in many areas of science and technology including geology, geography, medicine, minefield detection, molecular biology, photography, quality control and reliability theory and radio-optics.
Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.
This book provides a practical, comprehensive and up-to-date overview of the use of spatial statistics in epidemiology - the study of the incidence and distribution of diseases. Used appropriately, spatial analytical methods in conjunction with GIS and remotely sensed data can provide significant insights into the biological patterns and processes that underlie disease transmission. In turn, these can be used to understand and predict disease prevalence. This user-friendly text brings together the specialised and widely-dispersed literature on spatial analysis to make these methodological tools accessible to epidemiologists for the first time. With its focus is on application rather than theory, Spatial Analysis in Epidemiology includes a wide range of examples taken from both medical (human) and veterinary (animal) disciplines, and describes both infectious diseases and non-infectious conditions. Furthermore, it provides worked examples of methodologies using a single data set from the same disease example throughout, and is structured to follow the logical sequence of description of spatial data, visualisation, exploration, modelling and decision support. This accessible text is aimed at graduate students and researchers dealing with spatial data in the fields of epidemiology (both medical and veterinary), ecology, zoology and parasitology, environmental science, geography and statistics.