This Data Handbook is a updated and largely extended new edition of the book "Semiconductors: Basic Data". The data of the former edition have been updated and a complete representation of all relevant basic data is now given for all known groups of semiconducting materials.
WORLD-CLASS SEMICONDUCTOR MANUFACTURING EXPERTISE AT YOUR FINGERTIPS This is a comprehensive reference to the semiconductor manufacturing process and ancillary facilities -- from raw material preparation to packaging and testing, applying basics to emerging technologies. Readers charged with optimizing the design and performance of manufacturing processes will find all the information necessary to produce the highest quality chips at the lowest price in the shortest time possible. The Semiconductor Manufacturing Handbook provides leading-edge information on semiconductor wafer processes, MEMS, nanotechnology, and FPD, plus the latest manufacturing and automation technologies, including: Yield Management Automated Material Handling System Fab and Cleanroom Design and Operation Gas Abatement and Waste Treatment Management And much more Written by 60 international experts, and peer reviewed by a seasoned advisory board, this handbook covers the fundamentals of relevant technology and its real-life application and operational considerations for planning, implementing, and controlling manufacturing processes. It includes hundreds of detailed illustrations and a list of relevant books, technical papers, and websites for further research. This inclusive, wide-ranging coverage makes the Semiconductor Manufacturing Handbook the most comprehensive single-volume reference ever published in the field. STATE-OF-THE-ART SEMICONDUCTOR TECHNOLOGIES AND MANUFACTURING PROCESSES: SEMICONDUCTOR FUNDAMENTALS How Chips Are Designed and Made * Substrates * Copper and Low-k Dielectrics * Silicide Formation * Plasma * Vacuum * Photomask WAFER PROCESSING TECHNOLOGIES Microlithography * Ion Implantation * Etch * PVD/ALD * CVD * ECD * Epitaxy * CMP * Wet Cleaning FINAL MANUFACTURING Packaging * Grinding, Stress Relief, Dicing * Inspection, Measurement, and Testing NANOTECHNOLOGY, MEMS, AND FPD GAS AND CHEMICALS Specialty Gas System and DCA * Gas Abatement Systems * Chemical and Slurries Delivery System * Ultra Pure Water FAB YIELD, OPERATIONS, AND FACILITIES Yield Management * Automated Materials Handling System * Metrology * Six Sigma * Advanced Process Control * EHS * Fab Design and Construction * Cleanroom * Vibration and Acoustic Control * ESD * Airborne Molecular Control * Particle Monitoring * Wastewater Neutralization Systems
Aiming to bridge the gap in understanding between professional electrochemists and hard-core semiconductor physicists and material scientists, this book examines the science and technology of semiconductor electrode-positioning. Summarizing state-of-the-art information concerning a wide variety of semiconductors, it reviews fundamental electrodeposition concepts and terminology.
Containing more than 300 equations and nearly 500 drawings, photographs, and micrographs, this reference surveys key areas such as optical measurements and in-line calibration methods. It describes cleanroom-based measurement technology used during the manufacture of silicon integrated circuits and covers model-based, critical dimension, overlay
The three volumes of this handbook treat the fundamentals, technology and nanotechnology of nitride semiconductors with an extraordinary clarity and depth. They present all the necessary basics of semiconductor and device physics and engineering together with an extensive reference section. Volume 1 deals with the properties and growth of GaN. The deposition methods considered are: hydride VPE, organometallic CVD, MBE, and liquid/high pressure growth. Additionally, extended defects and their electrical nature, point defects, and doping are reviewed.
The first comprehensive guide to the chemicals and gases used in semiconductor manufacturing The fabrication of semiconductor devices involves a series of complex chemical processes such as photolithography, etching, cleaning, thin film deposition, and polishing. Until now, there has been no convenient source of information on the properties, applications, and health and safety considerations of the chemicals used in these processes. The Handbook of Chemicals and Gases for the Semiconductor Industry meets this need. Each of the Handbook's eight chapters is related to a specific area of semiconductor processing. The authors provide a brief overview of each step in the process, followed by tables containing physical properties, handling, safety, and other pertinent information on chemicals and gases typically used in these processes. The 270 chemical and gas entries include data on physical properties, emergency treatment procedures, waste disposal, and incompatible materials, as well as descriptions of applications, chemical mechanisms involved, and references to the literature. Appendices cross-reference entries by process, chemical name, and CAS number. The Handbook's eight chapters are: Thin Film Deposition Materials Wafer Cleaning Materials Photolithography Materials Wet and Dry Etching Materials Chemical Mechanical Planarizing Methods Carrier Gases Uncategorized Materials Semiconductor Chemicals Analysis No other single source brings together these useful and important data on chemicals and gases used in the manufacture of semiconductor devices. The Handbook of Chemicals and Gases for the Semiconductor Industry will be a valuable reference for process engineers, scientists, suppliers to the semiconductor industry, microelectronics researchers, and students.
This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.
This book is a practical guide to optical, optoelectronic, and semiconductor materials and provides an overview of the topic from its fundamentals to cutting-edge processing routes to groundbreaking technologies for the most recent applications. The book details the characterization and properties of these materials. Chemical methods of synthesis are emphasized by the authors throughout the publication. Describes new materials and updates to older materials that exhibit optical, optoelectronic and semiconductor behaviors; Covers the structural and mechanical aspects of the optical, optoelectronic and semiconductor materials for meeting mechanical property and safety requirements; Includes discussion of the environmental and sustainability issues regarding optical, optoelectronic, and semiconductor materials, from processing to recycling.
Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to stud
This book provides an in-depth review of the rapidly developing field of spintronic semiconductors. It covers a broad range of topics, including growth and basic physical properties of diluted magnetic semiconductors based on II-VI, III-V and IV semiconductors, recent developments in theory and experimental techniques and potential device applications; its aim is to provide postgraduate students, researchers and engineers a comprehensive overview of our present knowledge and future perspectives of spintronic semiconductors.