Aiming to bridge the gap in understanding between professional electrochemists and hard-core semiconductor physicists and material scientists, this book examines the science and technology of semiconductor electrode-positioning. Summarizing state-of-the-art information concerning a wide variety of semiconductors, it reviews fundamental electrodeposition concepts and terminology.
Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)
This book provides readers with state-of-the-art knowledge of established and emerging semiconducting materials, their processing, and the fabrication of chips and microprocessors. In addition to covering the fundamentals of these materials, it details the basics and workings of many semiconducting devices and their role in modern electronics and explores emerging semiconductors and their importance in future devices. • Provides readers with latest advances in semiconductors. • Covers diodes, transistors, and other devices using semiconducting materials. • Covers advances and challenges in semiconductors and their technological applications. • Discusses fundamentals and characteristics of emerging semiconductors for chip manufacturing. This book provides directions to scientists, engineers, and researchers in materials engineering and related disciplines to help them better understand the physics, characteristics, and applications of modern semiconductors.
Edited by distinguished experts in this expanding field and with specialist contributions, this overview is the first of its kind to focus on electrodeposition from ionic liquids. This second edition has been completely revised and updated with approximately 20% new content and has been expanded by five chapters to cover the following topics: -Bulk and Interface Theory -Nanoscale Imaging including AFM, In situ STM and UHV-STM -Impedance Spectroscopy -Process Scale-up including Brighteners -Speciation and Redox Properties. The result is essential reading for electrochemists, materials scientists, chemists in industry, physical chemists, chemical engineers, inorganic and organic chemists.
This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices.Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.
Papers in this volume are from the 199th ECS Meeting, held in Washington, DC, Spring 2001. Morphology evolution encompasses electrochemical processing in ULSI fabrication, shape evolution, growth habit, and microstructure of electrodeposits. The most prominent example at present is the electrochemical deposition of copper for ULSI interconnects. Many other electrochemical processes at various stages of emergence and development hold promise for the electronics industry and beyond.
This 3e, edited by Peter M. Martin, PNNL 2005 Inventor of the Year, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. This long-awaited revision includes updated and new chapters on atomic layer deposition, cathodic arc deposition, sculpted thin films, polymer thin films and emerging technologies. Extensive material was added throughout the book, especially in the areas concerned with plasma-assisted vapor deposition processes and metallurgical coating applications.
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Electrochemical Processing in ULSI and MEMS 4¿, held during the 215th meeting of The Electrochemical Society, in San Francisco, CA from May 24 to 29, 2009.
This issue of ECS Transactions contain the most recent developments in compound semiconductors encompassing advanced devices, materials growth, characterization, processing, device fabrication, reliability, and other related topics, as well as the most recent developments in processes at the semiconductor/solution interface including etching, oxidation, passivation, film growth, electrochemical and photoelectrochemical processes, electroluminescence, photoluminescence, and other related topics.