This text provides the basic history, molecular structure and intrinsic properties, practical applications and future developments of polyethylene production and marketing - including recycling systems and metallocene technology. It describes commercial processing techniques used to convert raw polyethylene to finished products, emphasizing special properties and end-use applications.
This handbook provides an exhaustive description of polyethylene. The 50+ chapters are written by some of the most experienced and prominent authors in the field, providing a truly unique view of polyethylene. The book starts with a historical discussion on how low density polyethylene was discovered and how it provided unique opportunities in the early days. New catalysts are presented and show how they created an expansion in available products including linear low density polyethylene, high density polyethylene, copolymers, and polyethylene produced from metallocene catalysts. With these different catalysts systems a wide range of structures are possible with an equally wide range of physical properties. Numerous types of additives are presented that include additives for the protection of the resin from the environment and processing, fillers, processing aids, anti-fogging agents, pigments, and flame retardants. Common processing methods including extrusion, blown film, cast film, injection molding, and thermoforming are presented along with some of the more specialized processing techniques such as rotational molding, fiber processing, pipe extrusion, reactive extrusion, wire and cable, and foaming processes. The business of polyethylene including markets, world capacity, and future prospects are detailed. This handbook provides the most current and complete technology assessments and business practices for polyethylene resins.
Published by the Plastics Pipe Institute (PPI), the Handbook describes how polyethylene piping systems continue to provide utilities with a cost-effective solution to rehabilitate the underground infrastructure. The book will assist in designing and installing PE piping systems that can protect utilities and other end users from corrosion, earthquake damage and water loss due to leaky and corroded pipes and joints.
Handbook of Polymers, Third Edition represents an update on available data, including new values for many commercially available products, verification of existing data, and removal of older data where it is no longer useful. Polymers selected for this edition include all primary polymeric materials used by the plastics and chemical industries and specialty polymers used in the electronics, pharmaceutical, medical and aerospace fields, with extensive information also provided on biopolymers. The book includes data on all polymeric materials used by the plastics industry and branches of the chemical industry, as well as specialty polymers in the electronics, pharmaceutical, medical and space fields. The entire scope of the data is divided into sections to make data comparison and search easy, including synthesis, physical, mechanical, and rheological properties, chemical resistance, toxicity, environmental impact, and more. - Provides key data on all primary polymeric materials used in a wide range of industries and applications - Presents easy-to-access data divided into sections, making comparisons and search simple and intuitive - Includes data on general properties, history, synthesis, structure, physical properties, mechanical properties, chemical resistance, flammability, weather stability, toxicity, and more
UHMWPE Biomaterials Handbook describes the science, development, properties and application of of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints. This material is currently used in 1.4 million patients around the world every year for use in the hip, knee, upper extremities, and spine. Since the publication of the 1st edition there have been major advances in the development and clinical adoption of highly crosslinked UHMWPE for hip and knee replacement. There has also been a major international effort to introduce Vitamin E stabilized UHMWPE for patients. The accumulated knowledge on these two classes of materials are a key feature of the 2nd edition, along with an additional 19 additional chapters providing coverage of the key engineering aspects (biomechanical and materials science) and clinical/biological performance of UHMWPE, providing a more complete reference for industrial and academic materials specialists, and for surgeons and clinicians who require an understanding of the biomaterials properties of UHMWPE to work successfully on patient applications. - The UHMWPE Handbook is the comprehensive reference for professionals, researchers, and clinicians working with biomaterials technologies for joint replacement - New to this edition: 19 new chapters keep readers up to date with this fast moving topic, including a new section on UHMWPE biomaterials; highly crosslinked UHMWPE for hip and knee replacement; Vitamin E stabilized UHMWPE for patients; clinical performance, tribology an biologic interaction of UHMWPE - State-of-the-art coverage of UHMWPE technology, orthopedic applications, biomaterial characterisation and engineering aspects from recognised leaders in the field
An outstanding and thorough presentation of the complete field of plastics processing Handbook of Plastic Processes is the only comprehensive reference covering not just one, but all major processes used to produce plastic products-helping designers and manufacturers in selecting the best process for a given product while enabling users to better understand the performance characteristics of each process. The authors, all experts in their fields, explain in clear, concise, and practical terms the advantages, uses, and limitations of each process, as well as the most modern and up-to-date technologies available in their application. Coverage includes chapters on: Injection molding Compression and transfer molding Sheet extrusion Blow molding Calendering Foam processing Reinforced plastics processing Liquid resin processing Rotational molding Thermoforming Reaction injection molding Compounding, mixing, and blending Machining and mechanical fabrication Assembly, finishing, and decorating Each chapter details a particular process, its variations, the equipment used, the range of materials utilized in the process, and its advantages and limitations. Because of its increasing impact on the industry, the editor has also added a chapter on nanotechnology in plastics processing.
This book is intended to be a source of practical information on all types of plastic foams (cellular plastics) in use, including the new structural plastic foams. Elastomer (rubber-like) foams are also considered. The book is intended primarily for those who require a non-theoretical, authoritative, easy-to-use handbook in the subject area. It should be of value to materials engineers, plastics fabricators, chemists, chemical engineers and students. Recognized authorities have written several chapters and parts of chapters in their fields of expertise. The book is organized in such a way that information on a desired subject can be found rapidly. An unusual feature is a comprehensive listing of all known standardization documents (test methods, practices, and specifications), including some international standards. Each document includes a brief description of its contents.
Plastic films are high-performance materials which play an essential part in modern life. The plastics films industry uses state-of-the-art manufacturing processes and is continuously seeking out new technologies to improve its performance. The understanding of the nature of plastic films, their production techniques, applications and their characterisation is essential for producing new types of plastic films. This handbook has been written to discuss the production and main uses of plastic films. Plastic films are high-performance materials which play an essential part in modern life. Plastic films are mostly used in packaging applications but as will be seen from this book they are also used in the agricultural, medical and engineering fields. The plastics films industry uses state-of-the-art manufacturing processes and is continuously seeking out new technologies to improve its performance. The understanding of the nature of plastic films, their production techniques, applications and their characterisation is essential for producing new types of plastic films. This handbook has been written to discuss the production and main uses of plastic films.
Recently, the orthopedic industry developed new processing techniques (radiation crosslinking), which are expected to dramatically reduce wear and improve the longevity of hip implants beyond 10 years.This book describes the history and properties of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints by describing its properties and reviewing the latest clinical results.* The most up-to-date information on the properties of UHMWPE* Endorsed by Ticona - the world's leading manufacturer of UHMWPE for medical use* An enormous 'installed base' of over 1.4 million procedures each year* UHMWPE has been used by orthopedists for over 40 years, yet its properties and performance in situ are still not well understood
This handbook explores the applications of polymer foams, and the properties that make them suitable for so many applications, in the detail required by postgraduate students, researchers and the many industrial engineers and designers who work with polymer foam in industry. It covers the mechanical properties of foams and foam microstructure, processing of foams, mechanical testing and analysis (using Finite element analysis). In addition, it uniquely offers a broader perspective on the actual engineering of foams and foam based (or foam including) products by including nine detailed case studies which firmly plant the theory of the book in a real world context, making it ideal for both polymer engineers and chemists and mechanical engineers and product designers.*Complete coverage of the mechanical and design aspects of polymer foams from an acknowledged international expert: no other book is available with this breadth making this a plastics engineer's first choice for a single volume Handbook*Polymer foams are ubiquitous in modern life, used everywhere from running shoes to furniture, and this book includes nine extensive case studies covering each key class of application, including biomechanics*Offers a rigorous mechanical and microstructure perspective, plus a computer based chapter: Essential for engineers and designers alike.