What is heat treatment? This book describes heat treating technology in clear, concise, and nontheoretical language. It is an excellent introduction and guide for design and manufacturing engineers, technicians, students, and others who need to understand why heat treatment is specified and how different processes are used to obtain desired properties. The new Second Edition has been extensively updated and revised by Jon. L. Dossett, who has more than forty years of experience in theat treating operations and management. The update adds important information about new processes and process control techniques that have been developed or refined in recent years. Helpfull appendices have been added on decarburization of steels, boost/diffues cycles for carburizing, and process verification.
These volumes cover the properties, processing, and applications of metals and nonmetallic engineering materials. They are designed to provide the authoritative information and data necessary for the appropriate selection of materials to meet critical design and performance criteria.
An Emerging Tool for Pioneering Engineers Co-published by the International Federation of Heat Treatment and Surface Engineering.Thermal processing is a highly precise science that does not easily lend itself to improvements through modeling, as the computations required to attain an accurate prediction of the microstructure and properties of work
One of two self-contained volumes belonging to the newly revised Steel Heat Treatment Handbook, Second Edition, this book examines the behavior and processes involved in modern steel heat treatment applications. Steel Heat Treatment: Metallurgy and Technologies presents the principles that form the basis of heat treatment processes while incorporating detailed descriptions of advances emerging since the 1997 publication of the first edition. Revised, updated, and expanded, this book ensures up-to-date and thorough discussions of how specific heat treatment processes and different alloy elements affect the structure and the classification and mechanisms of steel transformation, distortion of properties of steel alloys. The book includes entirely new chapters on heat-treated components, and the treatment of tool steels, stainless steels, and powder metallurgy steel components. Steel Heat Treatment: Metallurgy and Technologies provides a focused resource for everyday use by advanced students and practitioners in metallurgy, process design, heat treatment, and mechanical and materials engineering.
Steel and its Heat Treatment: Bofors Handbook describes the fundamental metallographic concepts, materials testing, hardenability, heat treatment, and dimensional changes that occur during the hardening and tempering stages of steel. The book explains the boundaries separating the grain contents of steel, which are the low-angle grain boundaries, the high-angle grain boundaries, and the twinning boundaries. Engineers can determine the hardenability of steel through the Grossman test or the Jominy End-Quench test. Special hardening and tempering methods are employed for steel that are going to be fabricated into tools. The different methods of hardening are manual hardening for a small surface (the tip of a screw); spin hardening for objects with a rotational symmetry (gears with 5 modules or less); and progressive hardening (or a combination with spin hardening) for flat surfaces. The hardening and tempering processes cause changes in size and shape of the substance. The text presents examples of dimensional changes during the hardening and tempering of tool steels such as those occurring in plain-carbon steels and low-alloy steels. The book is a source of reliable information needed by engineers, tool and small equipment designers, as well as by metallurgists, structural, and mechanical engineers.
This book focuses on heat-treating by ASM, SME, and AISI standards. The manual has been created for use in student education, as well as to guide professionals who has been heat treating their entire lives. It is written without the typical metallurgical jargon. This book will serve as a training manual from day one in learning how to heat treat a metal, and then also serve as a day to day reference for a lifetime. This manual zeros in on the popular tool steels, alloy steels, heat-treatable stainless steels, case hardening steels, and more. It deals with these metals with up-to-date usage and processing recipes. What is different with this manual from all the others is that it doesn't just deal with the heat-treatment process, it also covers the continuation of the hardening process with cryogenics. Yes, it is written to help those who may want a thorough understanding of what goes on in the process of heat-treating, and how to do it better. However, it also shows how proper heat and cryogenic processing can save your company money. Making money through longer life tooling, decarb-free and stress relief, all while learning how to create a better, finer grain structure. This manual shows the reader that hardness is only an indication of hardness, and that the real money savings is in the fine grained structure. This manual is written for toolmakers, engineers, heat-treaters, procurement, management personnel, and anyone else who is involved in metals. Metals are affected by the entire thermal scale from 2400�F, down to -320�F. That is the complete range of thermally treated metals and that is what this manual covers.
This text covers the design of food processing equipment based on key unit operations, such as heating, cooling, and drying. In addition, mechanical processing operations such as separations, transport, storage, and packaging of food materials, as well as an introduction to food processes and food processing plants are discussed. Handbook of Food Processing Equipment is an essential reference for food engineers and food technologists working in the food process industries, as well as for designers of process plants. The book also serves as a basic reference for food process engineering students.The chapters cover engineering and economic issues for all important steps in food processing. This research is based on the physical properties of food, the analytical expressions of transport phenomena, and the description of typical equipment used in food processing. Illustrations that explain the structure and operation of industrial food processing equipment are presented. style="font-size: 13.3333330154419px;">The materials of construction and fabrication of food processing equipment are covered here, as well as the selection of the appropriate equipment for various food processing operations. Mechanical processing equipment such as size reduction, size enlargement, homogenization, and mixing are discussed. Mechanical separations equipment such as filters, centrifuges, presses, and solids/air systems, plus equipment for industrial food processing such as heat transfer, evaporation, dehydration, refrigeration, freezing, thermal processing, and dehydration, are presented. Equipment for novel food processes such as high pressure processing, are discussed. The appendices include conversion of units, selected thermophysical properties, plant utilities, and an extensive list of manufacturers and suppliers of food equipment.
The second edition of the Handbook of Induction Heating reflects the number of substantial advances that have taken place over the last decade in theory, computer modeling, semi-conductor power supplies, and process technology of induction heating and induction heat treating. This edition continues to be a synthesis of information, discoveries, and technical insights that have been accumulated at Inductoheat Inc. With an emphasis on design and implementation, the newest edition of this seminal guide provides numerous case studies, ready-to-use tables, diagrams, rules-of-thumb, simplified formulas, and graphs for working professionals and students.
In the 21st Century, processing food is no longer a simple or straightforward matter. Ongoing advances in manufacturing have placed new demands on the design and methodology of food processes. A highly interdisciplinary science, food process design draws upon the principles of chemical and mechanical engineering, microbiology, chemistry, nutrition and economics, and is of central importance to the food industry. Process design is the core of food engineering, and is concerned at its root with taking new concepts in food design and developing them through production and eventual consumption. Handbook of Food Process Design is a major new 2-volume work aimed at food engineers and the wider food industry. Comprising 46 original chapters written by a host of leading international food scientists, engineers, academics and systems specialists, the book has been developed to be the most comprehensive guide to food process design ever published. Starting from first principles, the book provides a complete account of food process designs, including heating and cooling, pasteurization, sterilization, refrigeration, drying, crystallization, extrusion, and separation. Mechanical operations including mixing, agitation, size reduction, extraction and leaching processes are fully documented. Novel process designs such as irradiation, high-pressure processing, ultrasound, ohmic heating and pulsed UV-light are also presented. Food packaging processes are considered, and chapters on food quality, safety and commercial imperatives portray the role process design in the broader context of food production and consumption.