Handbook of Differential Geometry

Handbook of Differential Geometry

Author: Franki J.E. Dillen

Publisher: Elsevier

Published: 2005-11-29

Total Pages: 575

ISBN-13: 0080461204

DOWNLOAD EBOOK

In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics


Handbook of Differential Geometry, Volume 1

Handbook of Differential Geometry, Volume 1

Author: F.J.E. Dillen

Publisher: Elsevier

Published: 1999-12-16

Total Pages: 1067

ISBN-13: 0080532837

DOWNLOAD EBOOK

In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.


Foundations of Differential Geometry, Volume 2

Foundations of Differential Geometry, Volume 2

Author: Shoshichi Kobayashi

Publisher: University of Texas Press

Published: 1996-02-22

Total Pages: 492

ISBN-13: 9780471157328

DOWNLOAD EBOOK

This two-volume introduction to differential geometry, part of Wiley's popular Classics Library, lays the foundation for understanding an area of study that has become vital to contemporary mathematics. It is completely self-contained and will serve as a reference as well as a teaching guide. Volume 1 presents a systematic introduction to the field from a brief survey of differentiable manifolds, Lie groups and fibre bundles to the extension of local transformations and Riemannian connections. The second volume continues with the study of variational problems on geodesics through differential geometric aspects of characteristic classes. Both volumes familiarize readers with basic computational techniques.


Differential Geometry

Differential Geometry

Author: Wolfgang Kühnel

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 394

ISBN-13: 0821839888

DOWNLOAD EBOOK

Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.


First Steps in Differential Geometry

First Steps in Differential Geometry

Author: Andrew McInerney

Publisher: Springer Science & Business Media

Published: 2013-07-09

Total Pages: 420

ISBN-13: 1461477328

DOWNLOAD EBOOK

Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.


Differential Geometry of Curves and Surfaces

Differential Geometry of Curves and Surfaces

Author: Victor Andreevich Toponogov

Publisher: Springer Science & Business Media

Published: 2006-09-10

Total Pages: 215

ISBN-13: 0817644024

DOWNLOAD EBOOK

Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels


Elementary Topics in Differential Geometry

Elementary Topics in Differential Geometry

Author: J. A. Thorpe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 263

ISBN-13: 1461261538

DOWNLOAD EBOOK

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.


Elementary Differential Geometry

Elementary Differential Geometry

Author: A.N. Pressley

Publisher: Springer Science & Business Media

Published: 2010-03-10

Total Pages: 469

ISBN-13: 1848828918

DOWNLOAD EBOOK

Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul


A Comprehensive Course in Analysis

A Comprehensive Course in Analysis

Author: Barry Simon

Publisher:

Published: 2015

Total Pages: 749

ISBN-13: 9781470411039

DOWNLOAD EBOOK

A Comprehensive Course in Analysis by Poincar Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis


Handbook of Geometric Analysis

Handbook of Geometric Analysis

Author: Lizhen Ji

Publisher:

Published: 2008

Total Pages: 704

ISBN-13:

DOWNLOAD EBOOK

"Geometric Analysis combines differential equations with differential geometry. An important aspect of geometric analysis is to approach geometric problems by studying differential equations. Besides some known linear differential operators such as the Laplace operator, many differential equations arising from differential geometry are nonlinear. A particularly important example is the Monge-Amperè equation. Applications to geometric problems have also motivated new methods and techniques in differential equations. The field of geometric analysis is broad and has had many striking applications. This handbook of geometric analysis--the first of the two to be published in the ALM series--presents introductions and survey papers treating important topics in geometric analysis, with their applications to related fields. It can be used as a reference by graduate students and by researchers in related areas."--Back cover.