Handbook of Categorical Algebra: Volume 3, Sheaf Theory

Handbook of Categorical Algebra: Volume 3, Sheaf Theory

Author: Francis Borceux

Publisher: Cambridge University Press

Published: 1994-12-08

Total Pages: 544

ISBN-13: 0521441803

DOWNLOAD EBOOK

The Handbook of Categorical Algebra is intended to give, in three volumes, a rather detailed account of what, ideally, everybody working in category theory should know, whatever the specific topic of research they have chosen. The book is planned also to serve as a reference book for both specialists in the field and all those using category theory as a tool. Volume 3 begins with the essential aspects of the theory of locales, proceeding to a study in chapter 2 of the sheaves on a locale and on a topological space, in their various equivalent presentations: functors, etale maps or W-sets. Next, this situation is generalized to the case of sheaves on a site and the corresponding notion of Grothendieck topos is introduced. Chapter 4 relates the theory of Grothendieck toposes with that of accessible categories and sketches, by proving the existence of a classifying topos for all coherent theories.


Sheaf Theory through Examples

Sheaf Theory through Examples

Author: Daniel Rosiak

Publisher: MIT Press

Published: 2022-10-25

Total Pages: 454

ISBN-13: 0262362376

DOWNLOAD EBOOK

An approachable introduction to elementary sheaf theory and its applications beyond pure math. Sheaves are mathematical constructions concerned with passages from local properties to global ones. They have played a fundamental role in the development of many areas of modern mathematics, yet the broad conceptual power of sheaf theory and its wide applicability to areas beyond pure math have only recently begun to be appreciated. Taking an applied category theory perspective, Sheaf Theory through Examples provides an approachable introduction to elementary sheaf theory and examines applications including n-colorings of graphs, satellite data, chess problems, Bayesian networks, self-similar groups, musical performance, complexes, and much more. With an emphasis on developing the theory via a wealth of well-motivated and vividly illustrated examples, Sheaf Theory through Examples supplements the formal development of concepts with philosophical reflections on topology, category theory, and sheaf theory, alongside a selection of advanced topics and examples that illustrate ideas like cellular sheaf cohomology, toposes, and geometric morphisms. Sheaf Theory through Examples seeks to bridge the powerful results of sheaf theory as used by mathematicians and real-world applications, while also supplementing the technical matters with a unique philosophical perspective attuned to the broader development of ideas.


Objects, Structures, and Logics

Objects, Structures, and Logics

Author: Gianluigi Oliveri

Publisher: Springer Nature

Published: 2022-03-08

Total Pages: 365

ISBN-13: 3030847063

DOWNLOAD EBOOK

This edited collection casts light on central issues within contemporary philosophy of mathematics such as the realism/anti-realism dispute; the relationship between logic and metaphysics; and the question of whether mathematics is a science of objects or structures. The discussions offered in the papers involve an in-depth investigation of, among other things, the notions of mathematical truth, proof, and grounding; and, often, a special emphasis is placed on considerations relating to mathematical practice. A distinguishing feature of the book is the multicultural nature of the community that has produced it. Philosophers, logicians, and mathematicians have all contributed high-quality articles which will prove valuable to researchers and students alike.


Mathematics of Big Data

Mathematics of Big Data

Author: Jeremy Kepner

Publisher: MIT Press

Published: 2018-08-07

Total Pages: 443

ISBN-13: 0262347911

DOWNLOAD EBOOK

The first book to present the common mathematical foundations of big data analysis across a range of applications and technologies. Today, the volume, velocity, and variety of data are increasing rapidly across a range of fields, including Internet search, healthcare, finance, social media, wireless devices, and cybersecurity. Indeed, these data are growing at a rate beyond our capacity to analyze them. The tools—including spreadsheets, databases, matrices, and graphs—developed to address this challenge all reflect the need to store and operate on data as whole sets rather than as individual elements. This book presents the common mathematical foundations of these data sets that apply across many applications and technologies. Associative arrays unify and simplify data, allowing readers to look past the differences among the various tools and leverage their mathematical similarities in order to solve the hardest big data challenges. The book first introduces the concept of the associative array in practical terms, presents the associative array manipulation system D4M (Dynamic Distributed Dimensional Data Model), and describes the application of associative arrays to graph analysis and machine learning. It provides a mathematically rigorous definition of associative arrays and describes the properties of associative arrays that arise from this definition. Finally, the book shows how concepts of linearity can be extended to encompass associative arrays. Mathematics of Big Data can be used as a textbook or reference by engineers, scientists, mathematicians, computer scientists, and software engineers who analyze big data.


Foundations of Software Science and Computation Structures

Foundations of Software Science and Computation Structures

Author: Stefan Kiefer

Publisher: Springer Nature

Published: 2021-03-22

Total Pages: 574

ISBN-13: 3030719952

DOWNLOAD EBOOK

This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems.


Proof And Computation Ii: From Proof Theory And Univalent Mathematics To Program Extraction And Verification

Proof And Computation Ii: From Proof Theory And Univalent Mathematics To Program Extraction And Verification

Author: Klaus Mainzer

Publisher: World Scientific

Published: 2021-07-27

Total Pages: 425

ISBN-13: 9811236496

DOWNLOAD EBOOK

This book is for graduate students and researchers, introducing modern foundational research in mathematics, computer science, and philosophy from an interdisciplinary point of view. Its scope includes proof theory, constructive mathematics and type theory, univalent mathematics and point-free approaches to topology, extraction of certified programs from proofs, automated proofs in the automotive industry, as well as the philosophical and historical background of proof theory. By filling the gap between (under-)graduate level textbooks and advanced research papers, the book gives a scholarly account of recent developments and emerging branches of the aforementioned fields.


Graph Transformation

Graph Transformation

Author: Maribel Fernández

Publisher: Springer Nature

Published: 2023-08-14

Total Pages: 308

ISBN-13: 303136709X

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 16th International Conference on Graph Transformation, ICGT 2023, held as Part of STAF 2023 in Leicester, UK, in July 2023. The 14 full papers and 2 short papers presented in this book were carefully reviewed and selected from 29 submissions. The conference focuses on describing new unpublished contributions in the theory and applications of graph transformation as well as tool presentation papers that demonstrate main new features and functionalities of graph-based tools.


New Directions in Paraconsistent Logic

New Directions in Paraconsistent Logic

Author: Jean-Yves Beziau

Publisher: Springer

Published: 2016-02-08

Total Pages: 542

ISBN-13: 8132227190

DOWNLOAD EBOOK

The present book discusses all aspects of paraconsistent logic, including the latest findings, and its various systems. It includes papers by leading international researchers, which address the subject in many different ways: development of abstract paraconsistent systems and new theorems about them; studies of the connections between these systems and other non-classical logics, such as non-monotonic, many-valued, relevant, paracomplete and fuzzy logics; philosophical interpretations of these constructions; and applications to other sciences, in particular quantum physics and mathematics. Reasoning with contradictions is the challenge of paraconsistent logic. The book will be of interest to graduate students and researchers working in mathematical logic, computer science, philosophical logic, linguistics and physics.


Handbook of Categorical Algebra: Volume 1, Basic Category Theory

Handbook of Categorical Algebra: Volume 1, Basic Category Theory

Author: Francis Borceux

Publisher: Cambridge University Press

Published: 1994-08-26

Total Pages: 363

ISBN-13: 0521441781

DOWNLOAD EBOOK

The Handbook of Categorical Algebra is designed to give, in three volumes, a detailed account of what should be known by everybody working in, or using, category theory. As such it will be a unique reference. The volumes are written in sequence, with the first being essentially self-contained, and are accessible to graduate students with a good background in mathematics. In particular, Volume 1, which is devoted to general concepts, can be used for advanced undergraduate courses on category theory.


New Perspectives in Algebra, Topology and Categories

New Perspectives in Algebra, Topology and Categories

Author: Maria Manuel Clementino

Publisher: Springer Nature

Published: 2021-10-16

Total Pages: 266

ISBN-13: 303084319X

DOWNLOAD EBOOK

This book provides an introduction to some key subjects in algebra and topology. It consists of comprehensive texts of some hours courses on the preliminaries for several advanced theories in (categorical) algebra and topology. Often, this kind of presentations is not so easy to find in the literature, where one begins articles by assuming a lot of knowledge in the field. This volume can both help young researchers to quickly get into the subject by offering a kind of « roadmap » and also help master students to be aware of the basics of other research directions in these fields before deciding to specialize in one of them. Furthermore, it can be used by established researchers who need a particular result for their own research and do not want to go through several research papers in order to understand a single proof. Although the chapters can be read as « self-contained » chapters, the authors have tried to coordinate the texts in order to make them complementary. The seven chapters of this volume correspond to the seven courses taught in two Summer Schools that took place in Louvain-la-Neuve in the frame of the project Fonds d’Appui à l’Internationalisation of the Université catholique de Louvain to strengthen the collaborations with the universities of Coimbra, Padova and Poitiers, within the Coimbra Group.