Written by leading soil and ground-water remediation scientists, Handbook of Bioremediation presents information regarding the processes, application, and limitations of using remediation technologies to restore contaminated soil and ground water. It covers field-tested technologies, site characterization requirements for each remediation technology, and the costs associated with their implementation. In addition to discussions and examples of developed technologies, the book provides insights into technologies ranging from theoretical concepts to limited field-scale investigations. In situ remediation systems, air sparging and bioventing, the use of electron acceptors other than oxygen, natural bioremediation, and the introduction of organisms into the subsurface are among the specific topics covered in this invaluable handbook.
Written by leading soil and ground-water remediation scientists, Handbook of Bioremediation presents information regarding the processes, application, and limitations of using remediation technologies to restore contaminated soil and ground water. It covers field-tested technologies, site characterization requirements for each remediation technology, and the costs associated with their implementation. In addition to discussions and examples of developed technologies, the book provides insights into technologies ranging from theoretical concepts to limited field-scale investigations. In situ remediation systems, air sparging and bioventing, the use of electron acceptors other than oxygen, natural bioremediation, and the introduction of organisms into the subsurface are among the specific topics covered in this invaluable handbook.
Handbook of Bioremediation: Physiological, Molecular and Biotechnological Interventions discusses the mechanisms of responding to inorganic and organic pollutants in the environment using different approaches of phytoremediation and bioremediation. Part One focuses specifically on inorganic pollutants and the use of techniques such as metallothionein-assisted remediation, phytoextraction and genetic manipulation. Part Two covers organic pollutants and consider topics such as plant enzymes, antioxidant defense systems and the remediation mechanisms of different plant species. This comprehensive volume is a must-read for researchers interested in plant science, agriculture, soil science and environmental science. The techniques covered in this book will ensure scientists have the knowledge to practice effective bioremediation techniques themselves. - Provides a comprehensive review of the latest advances in bioremediation of organic and inorganic pollutants - Discusses a range of different phytoremediation techniques - Evaluates the role of genomics and bioinformatics within bioremediation
The introduction of synthetic organic chemicals into the environment during the last few decades has given rise to major concern about the ecotoxicological effects and ultimate fate of these compounds. The pollutants that are considered to be most hazardous because of their intrinsic toxicity, high exposure level, or recalcitrant behavior in the environment have been placed on blacklists and other policy priority lists. The fate of synthetic compounds that enter the environment is mainly determined by their rate of biodegradation, which therefore also has a major effect on the degree of bioaccumulation and the risk of ecotoxicological effects. The degree and rate of biodegradation is also of critical importance for the feasibility of biological techniques to clean up contaminated sites and waste streams. The biodegradation of xenobiotics has thus been the subject of numerous studies, which resulted in thousands of publications in scientific journals, books, and conference proceedings. These studies led to a deeper understanding of the diversity of biodegradation processes. As a result, it has become possible to enhance the rate of degradation of recalcitrant pollutants during biological treatment and to design completely new treatment processes. At present, much work is being done to expand the range of pollutants to which biodegradation can be applied, and to make treatment techniques less expensive and better applicable for waste streams which are difficult to handle.
This work features scientific, technical and practical information on mineral, organic and synthetic conditioners, as well as their beneficial effects on the soil's physical properties that promote optimal plant growth, maximize soil fertility, and enhance biomediation processes. It promotes the synergistic use of various agricultural technologies to manage global concerns of decreasing arable land.
Biotechnologyâ€"the manipulation of the basic building blocks of lifeâ€"is rapidly advancing in laboratories around the world. It has become routine to refer to DNA fingerprints and genetically engineered foods. Yet the "how to" of biotechnology is only the beginning. For every report of new therapies or better ways to produce food, there is a Jurassic Park scenario to remind us of the potential pitfalls. Biotechnology raises serious issues for scientists and nonscientists alike: Who will decide what is safe? Who will have access to our personal genetic information? What are the risks when advanced science becomes big business? In Biotechnology, experts from science, law, industry, and government explore a cross-section of emerging issues. This book offers straightforward explanations of basic science and provides insight into the serious social questions raised by these findings. The discussions explore five key areas: The state of the art in biotechnology-including an overview of the genetic revolution, the development of recombinant DNA technology, and the possibilities for applying the new techniques. Potential benefits to medicine and the environment-including gene therapy, the emerging area of tissue engineering and biomaterials, and the development of therapeutic proteins. Issues in technology transfer-focusing on the sometimes controversial relationship between university research centers and industry. Ethics, behavior, and values-exploring the ethical issues that surround basic research and applications of new technology, with a discussion of scientific misconduct and a penetrating look at the social impact of genetic discoveries. Government's role-including a comparison of U.S., European, and Japanese policies on pharmaceutical and biotechnology development. Biotechnology is here to stay, and this volume adds immeasurably to understanding its multiple aspects and far-reaching implications. This book will be of interest to scientists and industry leaders involved in biotechnology issues-and it will be welcomed by the concerned lay reader. Frederick B. Rudolph, Ph.D., is a professor of biochemistry and cell biology at Rice University and is executive director of the Institute of Biosciences and Bioengineering. Larry V. McIntire, Ph.D., is the E. D. Butcher Professor of Chemical and Biomedical Engineering at Rice University and is chair of the Institute of Biosciences and Bioengineering.
A synthesis of years of interdisciplinary research and practice, the second edition of this bestseller continues to serve as a primary resource for information on the assessment, remediation, and control of contamination on and below the ground surface. Practical Handbook of Soil, Vadose Zone, and Ground-Water Contamination: Assessment, Prev
In situ bioremediationâ€"the use of microorganisms for on-site removal of contaminantsâ€"is potentially cheaper, faster, and safer than conventional cleanup methods. But in situ bioremediation is also clouded in uncertainty, controversy, and mistrust. This volume from the National Research Council provides direction for decisionmakers and offers detailed and readable explanations of: the processes involved in in situ bioremediation, circumstances in which it is best used, and methods of measurement, field testing, and modeling to evaluate the results of bioremediation projects. Bioremediation experts representing academic research, field practice, regulation, and industry provide accessible information and case examples; they explore how in situ bioremediation works, how it has developed since its first commercial use in 1972, and what research and education efforts are recommended for the future. The volume includes a series of perspective papers. The book will be immediately useful to policymakers, regulators, bioremediation practitioners and purchasers, environmental groups, concerned citizens, faculty, and students.
Hazardous Waste Site Remediation is an outstanding textbook that reviews specific treatment processes, as well as pertinent basic concepts in organic geochemistry, material balance mass transfer, thermodynamics, and kinetics. Following a quantitative approach to source control, the text covers regulations, materials handling, engineering principles, soil vapor extraction, chemical extraction and soil washing, solidification and stabilization, and chemical destruction. It also explores topics in bioremediation, thermal processes, risk assessment, and waste minimization. A solutions manual is available.