The section of this handbook has been dividing into two volumes, the first volume contains information relating to purines, pyrimidine and nucleoside, oligonucleotide, polynucleotides, and their derivatives. Both ribo and deoxyribo compounds are listed also. The second volume will contain the remaining material similar to Volume 1 and material more relative to genetic and biological aspects such as enzymes involved in nucleic acid function, protein synthesis, linkage maps.
Edited by renowned protein scientist and bestselling author Roger L. Lundblad, with the assistance of Fiona M. Macdonald of CRC Press, this fifth edition of the Handbook of Biochemistry and Molecular Biology gathers a wealth of information not easily obtained, including information not found on the web. Presented in an organized, concise, and simple-to-use format, this popular reference allows quick access to the most frequently used data. Covering a wide range of topics, from classical biochemistry to proteomics and genomics, it also details the properties of commonly used biochemicals, laboratory solvents, and reagents. An entirely new section on Chemical Biology and Drug Design gathers data on amino acid antagonists, click chemistry, plus glossaries for computational drug design and medicinal chemistry. Each table is exhaustively referenced, giving the user a quick entry point into the primary literature. New tables for this edition: Chromatographic methods and solvents Protein spectroscopy Partial volumes of amino acids Matrix Metalloproteinases Gene Editing Click Chemistry
Edited by renowned protein scientist and bestselling author Roger L. Lundblad, with the assistance of Fiona M. Macdonald of CRC Press, this fourth edition of the Handbook of Biochemistry and Molecular Biology represents a dramatic revision — the first in two decades — of one of biochemistry's most referenced works. This edition gathers a wealth of information not easily obtained, including information not found on the web. Offering a molecular perspective not available 20 years ago, it provides physical and chemical data on proteins, nucleic acids, lipids, and carbohydrates. Presented in an organized, concise, and simple-to-use format, this popular reference allows quick access to the most frequently used data. Covering a wide range of topics, from classical biochemistry to proteomics and genomics, it also details the properties of commonly used biochemicals, laboratory solvents, and reagents. Just a small sampling of the wealth of information found inside the handbook: Buffers and buffer solutions Heat capacities and combustion levels Reagents for the chemical modification of proteins Comprehensive classification system for lipids Biological characteristics of vitamins A huge variety of UV data Recommendations for nomenclature and tables in biochemical thermodynamics Guidelines for NMR measurements for determination of high and low pKa values Viscosity and density tables Chemical and physical properties of various commercial plastics Generic source-based nomenclature for polymers Therapeutic enzymes About the Editors: Roger L. Lundblad, Ph.D. Roger L. Lundblad is a native of San Francisco, California. He received his undergraduate education at Pacific Lutheran University and his PhD degree in biochemistry at the University of Washington. After postdoctoral work in the laboratories of Stanford Moore and William Stein at the Rockefeller University, he joined the faculty of the University of North Carolina at Chapel Hill. He joined the Hyland Division of Baxter Healthcare in 1990. Currently Dr. Lundblad is an independent consultant and writer in biotechnology in Chapel Hill, North Carolina. He is an adjunct Professor of Pathology at the University of North Carolina at Chapel Hill and Editor-in-Chief of the Internet Journal of Genomics and Proteomics. Fiona M. Macdonald, Ph.D., F.R.S.C. Fiona M. Macdonald received her BSc in chemistry from Durham University, UK. She obtained her PhD in inorganic biochemistry at Birkbeck College, University of London, studying under Peter Sadler. Having spent most of her career in scientific publishing, she is now at Taylor and Francis and is involved in developing chemical information products.
When the first edition of this book was published in 1950, it set out to present an elementary outline of the state of knowledge of nucleic acid biochemistry at that time and it was the first monograph on the subject to appear since Levene's book on Nucleic Acids in 1931. The fact that a tenth edition is required after thirty five years and that virtually nothing of the original book has been retained is some measure of the speed with which knowledge has advanced in this field. As a result of this vast increase in information it becomes increasingly difficult to fulfil the aims of providing an introduction to nucleic acid biochemistry and satisfying the requirements of advanced undergraduates and postgraduates in biochemistry, genetics and molecular biology. We have attempted to achieve these aims by con centrating on those basic aspects not normally covered in the general biochemistry textbooks and by providing copious references so that details of methodology can readily be retrieved by those requiring further information. The first seven editions emerged from the pen of J. N. Davidson who died in September 1972 shortly after completing the seventh edition. The subsequent editions have been produced by various colleagues who have tried to retain something of the character and structure of the earlier editions while at the same time introducing new ideas and concepts and eliminating some of the more out -dated material.
This long awaited third edition of Phytochemical Methods is, as its predecessors, a key tool for undergraduates, research workers in plant biochemistry, plant taxonomists and any researchers in related areas where the analysis of organic plant components is key to their investigations. Phytochemistry is a rapidly expanding area with new techniques being developed and existing ones perfected and made easier to incorporate as standard methods in the laboratory. This latest edition includes descriptions of the most up-to-date methods such as HPLC and the increasingly sophisticated NMR and related spectral techniques. Other methods described are the use of NMR to locate substances within the plant cell and the chiral separation of essential oils. After an introductory chapter on methods of plant analysis, individual chapters describe methods of identifying the different type of plant molecules: phenolic compounds, terpenoids, organic acids, lipids and related compounds, nitrogen compounds, sugar and derivatives and macromolecules. Different methods are discussed and recommended, and guidance provided for the analysis of compounds of special physiological relevance such as endogenous growth regulators, substances of pharmacological interest and screening methods for the detection of substances for taxonomic purposes. It also includes an important bibliographic guide to specialized texts. This comprehensive book constitutes a unique and indispensable practical guide for any phytochemistry or related laboratory, and provides hands-on description of experimental techniques so that students and researchers can become familiar with these invaluable methods.
This book is a collection of contributions from leading scientists in the field of intracellular symbiosis research outlining the present status of endocytobiosis studies on the most important groups of insects. Emphasis is on the results of ex-perimental symbiosis research on the morphology, physiology, and genetics of selected insect groups. Insights provided by the new interdisciplinary research field of endocytobiology is considered in interpreting experimental results of symbiology. Various insect endocytobionts are discussed with regard to their evolutionary development, reflecting the current status of evolution research. Special attention is given to the phylogenetic and systematic classification of endocytobionts. Also discussed in comparison with the similar system of ticks are all endosymbioses found in roaches, termites, ants, cicadas, coccids, aphids, flies, and beetles.
Leading experts from all over the world present an overview of the use of enzymes in industry for: - the production of bulk products, such as glucose, or fructose - food processing and food analysis - laundry and automatic dishwashing detergents - the textile, pulp and paper and animal feed industries - clinical diagnosis and therapy - genetic engineering. The book also covers identification methods of new enzymes and the optimization of known ones, as well as the regulatory aspects for their use in industrial applications. Up to date and wide in scope, this is a chance for non-specialists to acquaint themselves with this rapidly growing field. '...The quality...is so great that there is no hesitation in recommending it as ideal reading for any student requiring an introduction to enzymes. ...Enzymes in Industry - should command a place in any library, industrial or academic, where it will be frequently used.' The Genetic Engineer and Biotechnologist 'Enzymes in Industry' is an excellent introduction into the field of applied enzymology for the reader who is not familiar with the subject. ... offers a broad overview of the use of enzymes in industrial applications. It is up-to-date and remarkable easy to read, despite the fact that almost 50 different authors contributed. The scientist involved in enzyme work should have this book in his or her library. But it will also be of great value to the marketing expert interested in the present use of enzymes and their future in food and nonfood applications.' Angewandte Chemie 'This book should be available to all of those working with, or aspiring to work with, enzymes. In particular academics should use this volume as a source book to ensure that their 'new' projects will not 'reinvent the wheel'.' Journal of Chemical Technology and Biotechnology
Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work.