PASCAL-XSC

PASCAL-XSC

Author: Rudi Klatte

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 348

ISBN-13: 3642772773

DOWNLOAD EBOOK

This manual describes a PASCAL extension for scientific computation with the short title PASCAL-XSC (PASCAL eXtension for Scientific Computation). The language is the result of a long term effort of members of the Institute for Applied Mathematics of Karlsruhe University and several associated scientists. PASCAL XSC is intended to make the computer more powerful arithmetically than usual. It makes the computer look like a vector processor to the programmer by providing the vector/matrix operations in a natural form with array data types and the usual operator symbols. Programming of algorithms is thus brought considerably closer to the usual mathematical notation. As an additional feature in PASCAL-XSC, all predefined operators for real and complex numbers and intervals, vectors, matrices, and so on, deliver an answer that differs from the exact result by at most one rounding. Numerical mathematics has devised algorithms that deliver highly accurate and automatically verified results by applying mathematical fixed point theorems. That is, these computations carry their own accuracy control. However, their imple mentation requires arithmetic and programming tools that have not been available previously. The development of PASCAL-XSC has been aimed at providing these tools within the PASCAL setting. Work on the subject began during the 1960's with the development of a general theory of computer arithmetic. At first, new algorithms for the realization of the arithmetic operations had to be developed and implemented.


C-XSC

C-XSC

Author: Rudi Klatte

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 277

ISBN-13: 3642580580

DOWNLOAD EBOOK

C-XSC is a tool for the development of numerical algorithms delivering highly accurate and automatically verified results. It provides a large number of predefined numerical data types and operators. These types are implemented as C++ classes. Thus, C-XSC allows high-level programming of numerical applications in C and C++. The most important features of C-XSC are: real, complex, interval, and complex interval arithmetic; dynamic vectors and matrices; subarrays of vectors and matrices; dotprecision data types, predefined arithmetic operators with maximum accuracy; standard functions of high accuracy; multiple precision arithmetic and standard functions; rounding control for I/O data; error handling, and library of problem solving routines with automatic result verification. Thus, C-XSC makes the computer more powerful concerning the arithmetic. C-XSC is immediately usable by C programmers, easy to learn, user-extendable, and may also be combined with other tools. The book can be used as a textbook and as a reference manual. It consists of an introduction to advanced computer arithmetic, a chapter describing the programming languages C and C++, the major chapter "C-XSC Reference", sample programs, and indices.


Chaos and Fractals: The Mathematics Behind the Computer Graphics

Chaos and Fractals: The Mathematics Behind the Computer Graphics

Author: Robert L. Devaney

Publisher: American Mathematical Soc.

Published: 1989

Total Pages: 176

ISBN-13: 0821801376

DOWNLOAD EBOOK

The terms chaos and fractals have received widespread attention in recent years. The alluring computer graphics images associated with these terms have heightened interest among scientists in these ideas. This volume contains the introductory survey lectures delivered in the American Mathematical Society Short Course, Chaos and Fractals: The Mathematics Behind the Computer Graphics, on August 6-7, 1988, given in conjunction with the AMS Centennial Meeting in Providence, Rhode Island. In his overview, Robert L. Devaney introduces such key topics as hyperbolicity, the period doubling route to chaos, chaotic dynamics, symbolic dynamics and the horseshoe, and the appearance of fractals as the chaotic set for a dynamical system. Linda Keen and Bodil Branner discuss the Mandelbrot set and Julia sets associated to the complex quadratic family z -> z2 + c. Kathleen T. Alligood, James A. Yorke, and Philip J. Holmes discuss some of these topics in higher dimensional settings, including the Smale horseshoe and strange attractors. Jenny Harrison and Michael F. Barnsley give an overview of fractal geometry and its applications. -- from dust jacket.


Integrals Related to the Error Function

Integrals Related to the Error Function

Author: Nikolai E. Korotkov

Publisher: CRC Press

Published: 2020-03-05

Total Pages: 248

ISBN-13: 1000033074

DOWNLOAD EBOOK

The first book in English language to present a comprehensive collection of integrals related to the error function Useful for researchers whose work involves the error function (e.g., via probability integrals in communication theory). Additionally, it can also be used by broader audience.