Handbook for Applied Modeling: Non-Gaussian and Correlated Data

Handbook for Applied Modeling: Non-Gaussian and Correlated Data

Author: Jamie D. Riggs

Publisher: Cambridge University Press

Published: 2017-07-14

Total Pages: 233

ISBN-13: 1108210961

DOWNLOAD EBOOK

Designed for the applied practitioner, this book is a compact, entry-level guide to modeling and analyzing non-Gaussian and correlated data. Many practitioners work with data that fail the assumptions of the common linear regression models, necessitating more advanced modeling techniques. This Handbook presents clearly explained modeling options for such situations, along with extensive example data analyses. The book explains core models such as logistic regression, count regression, longitudinal regression, survival analysis, and structural equation modelling without relying on mathematical derivations. All data analyses are performed on real and publicly available data sets, which are revisited multiple times to show differing results using various modeling options. Common pitfalls, data issues, and interpretation of model results are also addressed. Programs in both R and SAS are made available for all results presented in the text so that readers can emulate and adapt analyses for their own data analysis needs. Data, R, and SAS scripts can be found online at http://www.spesi.org.


Mixed Effects Models for Complex Data

Mixed Effects Models for Complex Data

Author: Lang Wu

Publisher: CRC Press

Published: 2009-11-11

Total Pages: 431

ISBN-13: 9781420074086

DOWNLOAD EBOOK

Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.


Modeling Count Data

Modeling Count Data

Author: Joseph M. Hilbe

Publisher: Cambridge University Press

Published: 2014-07-21

Total Pages: 301

ISBN-13: 1107028337

DOWNLOAD EBOOK

This book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.


An Introduction to Applied Multivariate Analysis with R

An Introduction to Applied Multivariate Analysis with R

Author: Brian Everitt

Publisher: Springer Science & Business Media

Published: 2011-04-23

Total Pages: 284

ISBN-13: 1441996508

DOWNLOAD EBOOK

The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.


Dependence Modeling

Dependence Modeling

Author: Harry Joe

Publisher: World Scientific

Published: 2011

Total Pages: 370

ISBN-13: 981429988X

DOWNLOAD EBOOK

1. Introduction : Dependence modeling / D. Kurowicka -- 2. Multivariate copulae / M. Fischer -- 3. Vines arise / R.M. Cooke, H. Joe and K. Aas -- 4. Sampling count variables with specified Pearson correlation : A comparison between a naive and a C-vine sampling approach / V. Erhardt and C. Czado -- 5. Micro correlations and tail dependence / R.M. Cooke, C. Kousky and H. Joe -- 6. The Copula information criterion and Its implications for the maximum pseudo-likelihood estimator / S. Gronneberg -- 7. Dependence comparisons of vine copulae with four or more variables / H. Joe -- 8. Tail dependence in vine copulae / H. Joe -- 9. Counting vines / O. Morales-Napoles -- 10. Regular vines : Generation algorithm and number of equivalence classes / H. Joe, R.M. Cooke and D. Kurowicka -- 11. Optimal truncation of vines / D. Kurowicka -- 12. Bayesian inference for D-vines : Estimation and model selection / C. Czado and A. Min -- 13. Analysis of Australian electricity loads using joint Bayesian inference of D-vines with autoregressive margins / C. Czado, F. Gartner and A. Min -- 14. Non-parametric Bayesian belief nets versus vines / A. Hanea -- 15. Modeling dependence between financial returns using pair-copula constructions / K. Aas and D. Berg -- 16. Dynamic D-vine model / A. Heinen and A. Valdesogo -- 17. Summary and future directions / D. Kurowicka


Applied Predictive Modeling

Applied Predictive Modeling

Author: Max Kuhn

Publisher: Springer Science & Business Media

Published: 2013-05-17

Total Pages: 595

ISBN-13: 1461468493

DOWNLOAD EBOOK

Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.


Handbook of Missing Data Methodology

Handbook of Missing Data Methodology

Author: Geert Molenberghs

Publisher: CRC Press

Published: 2014-11-06

Total Pages: 600

ISBN-13: 1439854610

DOWNLOAD EBOOK

Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.


Beyond Multiple Linear Regression

Beyond Multiple Linear Regression

Author: Paul Roback

Publisher: CRC Press

Published: 2021-01-14

Total Pages: 436

ISBN-13: 1439885400

DOWNLOAD EBOOK

Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)


Materials Processing Technologies

Materials Processing Technologies

Author: Zheng Yi Jiang

Publisher: Trans Tech Publications Ltd

Published: 2010-10-27

Total Pages: 1904

ISBN-13: 3038135569

DOWNLOAD EBOOK

Selected, peer reviewed papers from the 2010 International Conference on Advances in Materials and Manufacturing Processes (ICAMMP 2010), 6-8 November, 2010, Shenzhen, China


Handbook of Weather, Climate, and Water

Handbook of Weather, Climate, and Water

Author: Thomas D. Potter

Publisher: Wiley-Interscience

Published: 2003-01-20

Total Pages: 1028

ISBN-13:

DOWNLOAD EBOOK

A comprehensive survey of fundamental principles and the latest research on atmospheric, climatic, and hydrologic sciences The Handbook of Weather, Climate, and Water: Atmospheric Chemistry, Hydrology, and Societal Impacts is the first of two stand-alone volumes that will be landmarks in the meteorological literature for many years to come. Each volume encompasses both fundamental topics and critical issues that have recently surfaced in studies of the hydrosphere and atmosphere. Renowned experts have contributed to every part of this handbook. Each overview chapter is followed by topic-specific chapters written by specialists who present comprehensive discussions at a greater level of detail and complexity. The Handbook of Weather, Climate, and Water: Atmospheric Chemistry, Hydrology, and Societal Impacts covers topics that are essential for grasping the scientific bases of major issues such as global climate warming, the ozone hole, acid rain, floods, droughts, and other natural disasters. Cross-references between chapters allow readers to easily pursue a specific interest beyond a particular subtopic or individual chapter. Other topics include: Aerosols and smog Cloud chemistry Greenhouse gases Remote sensing techniques in hydrology Hydrologic forecasting and simulation Tropical deforestation effects on the climate system Societal impacts of the El Niño phenomenon The Handbook of Weather, Climate, and Water: Atmospheric Chemistry, Hydrology, and Societal Impacts will be an essential addition to the libraries of professionals and academics in the environmental sciences, and a valuable source book for university and technical libraries throughout the world.