Guided Electromagnetic Waves

Guided Electromagnetic Waves

Author: Michał Mrozowski

Publisher:

Published: 1997

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

The development of efficient techniques for the rigorous modelling of electromagnetic phenomena is a key factor in determining the progress in many technical area from microwave engineering to X-Ray technology. This book presents a class of numerical techniques for the analysis of discrete spectra of electrodynamic operators, highlights their advantages and drawbacks, and discusses their potential for solving practical problems. Examples of the application of some of the methods to solve both field theory and engineering problems are included.


Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics

Author: Kequian Zhang

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 683

ISBN-13: 3662035537

DOWNLOAD EBOOK

This book is a first-year graduate text on electromagnetic fields and waves. It is the translated and revised edition of the Chinese version with the same title published by the Publishing House of Electronic Industry (PHEI) of China in 1994. The text is based on the graduate course lectures on "Advanced Elec trodynamics" given by the authors at Tsinghua University. More than 300 students from the Department of Electronic Engineering and the Depart ment of Applied Physics have taken this course during the last decade. Their particular fields are microwave and millimeterwave theory and technology, physical electronics, optoelectronics and engineering physics. As the title of the book shows, the texts and examples in the book concentrate mainly on electromagnetic theory related to microwaves and optoelectronics, or light wave technology. However, the book can also be used as an intermediate-level text or reference book on electromagnetic fields and waves for students and scientists engaged in research in neighboring fields.


Anisotropic Propagation of Electromagnetic Waves

Anisotropic Propagation of Electromagnetic Waves

Author: Gregory Mitchell

Publisher:

Published: 2018

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This chapter will analyze the properties of electromagnetic wave propagation in anisotropic media. Of particular interest are positive index, anisotropic, and magneto-dielectric media. Engineered anisotropic media provide unique electromagnetic properties including a higher effective refractive index, high permeability with relatively low magnetic loss tangent at microwave frequencies, and lower density and weight than traditional media. This chapter presents research including plane wave solutions to propagation in anisotropic media, a mathematical derivation of birefringence in anisotropic media, modal decomposition of rectangular waveguides filled with anisotropic media, and the full derivation of anisotropic transverse resonance in a partially loaded waveguide. These are fundamental theories in the area of electromagnetic wave propagation that have been reformulated for fully anisotropic magneto-dielectric media. The ensuing results will aide interested parties in understanding wave behavior for anisotropic media to enhance designs for radio frequency devices based on anisotropic and magnetic media.


Antennas and Wave Propagation

Antennas and Wave Propagation

Author: Pedro Pinho

Publisher: BoD – Books on Demand

Published: 2018-09-26

Total Pages: 214

ISBN-13: 178923624X

DOWNLOAD EBOOK

Antennas and radio propagation are continuously and rapidly evolving and new challenges arise every day. As a result of these rapid changes the need for up-to-date texts that address this growing field from an interdisciplinary perspective persists. This book, organized into nine chapters, presents new antenna designs and materials that will be used in the future, due to the trend for higher frequencies, as well as a bird's eye view of some aspects related to radio propagation channel modeling. The book covers the theory but also the practical aspects of technology implementation in a way that is suitable for undergraduate and graduate-level students, as well as researchers and professional engineers.


Electromagnetic Radiation, Scattering, and Diffraction

Electromagnetic Radiation, Scattering, and Diffraction

Author: Prabhakar H. Pathak

Publisher: John Wiley & Sons

Published: 2021-12-21

Total Pages: 1156

ISBN-13: 1119810515

DOWNLOAD EBOOK

Electromagnetic Radiation, Scattering, and Diffraction Discover a graduate-level text for students specializing in electromagnetic wave radiation, scattering, and diffraction for engineering applications In Electromagnetic Radiation, Scattering and Diffraction, distinguished authors Drs. Prabhakar H. Pathak and Robert J. Burkholder deliver a thorough exploration of the behavior of electromagnetic fields in radiation, scattering, and guided wave environments. The book tackles its subject from first principles and includes coverage of low and high frequencies. It stresses physical interpretations of the electromagnetic wave phenomena along with their underlying mathematics. The authors emphasize fundamental principles and provide numerous examples to illustrate the concepts contained within. Students with a limited undergraduate electromagnetic background will rapidly and systematically advance their understanding of electromagnetic wave theory until they can complete useful and important graduate-level work on electromagnetic wave problems. Electromagnetic Radiation, Scattering and Diffraction also serves as a practical companion for students trying to simulate problems with commercial EM software and trying to better interpret their results. Readers will also benefit from the breadth and depth of topics, such as: Basic equations governing all electromagnetic (EM) phenomena at macroscopic scales are presented systematically. Stationary and relativistic moving boundary conditions are developed. Waves in planar multilayered isotropic and anisotropic media are analyzed. EM theorems are introduced and applied to a variety of useful antenna problems. Modal techniques are presented for analyzing guided wave and periodic structures. Potential theory and Green's function methods are developed to treat interior and exterior EM problems. Asymptotic High Frequency methods are developed for evaluating radiation Integrals to extract ray fields. Edge and surface diffracted ray fields, as well as surface, leaky and lateral wave fields are obtained. A collective ray analysis for finite conformal antenna phased arrays is developed. EM beams are introduced and provide useful basis functions. Integral equations and their numerical solutions via the method of moments are developed. The fast multipole method is presented. Low frequency breakdown is studied. Characteristic modes are discussed. Perfect for graduate students studying electromagnetic theory, Electromagnetic Radiation, Scattering, and Diffraction is an invaluable resource for professional electromagnetic engineers and researchers working in this area.


Electromagnetic Waves in Stratified Media

Electromagnetic Waves in Stratified Media

Author: James R. Wait

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 621

ISBN-13: 1483184250

DOWNLOAD EBOOK

International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagnetic waves from planar stratified media. Other chapters consider the oblique reflection of plane electromagnetic waves from a continuously stratified medium. This book discusses as well the fundamental theory of wave propagation around a sphere. The final chapter deals with the theory of propagation in a spherically stratified medium. This book is a valuable resource for electrical engineers, scientists, and research workers.