Symmetry

Symmetry

Author: R. McWeeny

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 263

ISBN-13: 1483226247

DOWNLOAD EBOOK

Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.


Group Theory and Its Applications in Physics

Group Theory and Its Applications in Physics

Author: Teturo Inui

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 409

ISBN-13: 3642800211

DOWNLOAD EBOOK

This book has been written to introduce readers to group theory and its ap plications in atomic physics, molecular physics, and solid-state physics. The first Japanese edition was published in 1976. The present English edi tion has been translated by the authors from the revised and enlarged edition of 1980. In translation, slight modifications have been made in. Chaps. 8 and 14 to update and condense the contents, together with some minor additions and improvements throughout the volume. The authors cordially thank Professor J. L. Birman and Professor M. Car dona, who encouraged them to prepare the English translation. Tokyo, January 1990 T. Inui . Y. Tanabe Y. Onodera Preface to the Japanese Edition As the title shows, this book has been prepared as a textbook to introduce readers to the applications of group theory in several fields of physics. Group theory is, in a nutshell, the mathematics of symmetry. It has three main areas of application in modern physics. The first originates from early studies of crystal morphology and constitutes a framework for classical crystal physics. The analysis of the symmetry of tensors representing macroscopic physical properties (such as elastic constants) belongs to this category. The sec ond area was enunciated by E. Wigner (1926) as a powerful means of handling quantum-mechanical problems and was first applied in this sense to the analysis of atomic spectra. Soon, H.


Group Theory

Group Theory

Author: Mildred S. Dresselhaus

Publisher: Springer Science & Business Media

Published: 2007-12-18

Total Pages: 576

ISBN-13: 3540328998

DOWNLOAD EBOOK

This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.


Group Theory

Group Theory

Author: Eugene P. Wigner

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 385

ISBN-13: 1483275760

DOWNLOAD EBOOK

Group Theory and its Application to the Quantum Mechanics of Atomic Spectra describes the applications of group theoretical methods to problems of quantum mechanics with particular reference to atomic spectra. The manuscript first takes a look at vectors and matrices, generalizations, and principal axis transformation. Topics include principal axis transformation for unitary and Hermitian matrices; unitary matrices and the scalar product; linear independence of vectors; and real orthogonal and symmetric matrices. The publication also ponders on the elements of quantum mechanics, perturbation theory, and transformation theory and the bases for the statistical interpretation of quantum mechanics. The book discusses abstract group theory and invariant subgroups, including theorems of finite groups, factor group, and isomorphism and homomorphism. The text also reviews the algebra of representation theory, rotation groups, three-dimensional pure rotation group, and characteristics of atomic spectra. Discussions focus on eigenvalues and quantum numbers, spherical harmonics, and representations of the unitary group. The manuscript is a valuable reference for readers interested in the applications of group theoretical methods.


Introductory Group Theory

Introductory Group Theory

Author: John R. Ferraro

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 235

ISBN-13: 1461548217

DOWNLOAD EBOOK

This volume is a consequence of a series of seminars presented by the authors at the Infrared Spectroscopy Institute, Canisius College, Buffalo, New York, over the last nine years. Many participants on an intermediate level lacked a sufficient background in mathematics and quantum mechan ics, and it became evident that a non mathematical or nearly nonmathe matical approach would be necessary. The lectures were designed to fill this need and proved very successful. As a result of the interest that was developed in this approach, it was decided to write this book. The text is intended for scientists and students with only limited theore tical background in spectroscopy, but who are sincerely interested in the interpretation of molecular spectra. The book develops the detailed selection rules for fundamentals, combinations, and overtones for molecules in several point groups. Detailed procedures used in carrying out the normal coordinate treatment for several molecules are also presented. Numerous examples from the literature illustrate the use of group theory in the in terpretation of molecular spectra and in the determination of molecular structure.


Group Theory and Quantum Mechanics

Group Theory and Quantum Mechanics

Author: Michael Tinkham

Publisher: Courier Corporation

Published: 2012-04-20

Total Pages: 354

ISBN-13: 0486131661

DOWNLOAD EBOOK

This graduate-level text develops the aspects of group theory most relevant to physics and chemistry (such as the theory of representations) and illustrates their applications to quantum mechanics. The first five chapters focus chiefly on the introduction of methods, illustrated by physical examples, and the final three chapters offer a systematic treatment of the quantum theory of atoms, molecules, and solids. The formal theory of finite groups and their representation is developed in Chapters 1 through 4 and illustrated by examples from the crystallographic point groups basic to solid-state and molecular theory. Chapter 5 is devoted to the theory of systems with full rotational symmetry, Chapter 6 to the systematic presentation of atomic structure, and Chapter 7 to molecular quantum mechanics. Chapter 8, which deals with solid-state physics, treats electronic energy band theory and magnetic crystal symmetry. A compact and worthwhile compilation of the scattered material on standard methods, this volume presumes a basic understanding of quantum theory.


A Course on Group Theory

A Course on Group Theory

Author: John S. Rose

Publisher: Courier Corporation

Published: 2013-05-27

Total Pages: 322

ISBN-13: 0486170667

DOWNLOAD EBOOK

Text for advanced courses in group theory focuses on finite groups, with emphasis on group actions. Explores normal and arithmetical structures of groups as well as applications. 679 exercises. 1978 edition.


Applications of the Theory of Groups in Mechanics and Physics

Applications of the Theory of Groups in Mechanics and Physics

Author: Petre P. Teodorescu

Publisher: Springer Science & Business Media

Published: 2004-04-30

Total Pages: 455

ISBN-13: 1402020473

DOWNLOAD EBOOK

The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non contradictory formulations for the investigated phenomena.