Handbook of Computational Group Theory

Handbook of Computational Group Theory

Author: Derek F. Holt

Publisher: CRC Press

Published: 2005-01-13

Total Pages: 532

ISBN-13: 1420035215

DOWNLOAD EBOOK

The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics. The Handbook of Computational Group Theory offers the first complete treatment of all the fundame


Mathematics and Computation

Mathematics and Computation

Author: Avi Wigderson

Publisher: Princeton University Press

Published: 2019-10-29

Total Pages: 434

ISBN-13: 0691189137

DOWNLOAD EBOOK

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography


Group Theory and Computation

Group Theory and Computation

Author: N.S. Narasimha Sastry

Publisher: Springer

Published: 2018-09-21

Total Pages: 213

ISBN-13: 9811320470

DOWNLOAD EBOOK

This book is a blend of recent developments in theoretical and computational aspects of group theory. It presents the state-of-the-art research topics in different aspects of group theory, namely, character theory, representation theory, integral group rings, the Monster simple group, computational algorithms and methods on finite groups, finite loops, periodic groups, Camina groups and generalizations, automorphisms and non-abelian tensor product of groups. Presenting a collection of invited articles by some of the leading and highly active researchers in the theory of finite groups and their representations and the Monster group, with a focus on computational aspects, this book is of particular interest to researchers in the area of group theory and related fields of mathematics.


Computation with Linear Algebraic Groups

Computation with Linear Algebraic Groups

Author: Willem Adriaan de Graaf

Publisher: CRC Press

Published: 2017-08-07

Total Pages: 324

ISBN-13: 1498722911

DOWNLOAD EBOOK

Designed as a self-contained account of a number of key algorithmic problems and their solutions for linear algebraic groups, this book combines in one single text both an introduction to the basic theory of linear algebraic groups and a substantial collection of useful algorithms. Computation with Linear Algebraic Groups offers an invaluable guide to graduate students and researchers working in algebraic groups, computational algebraic geometry, and computational group theory, as well as those looking for a concise introduction to the theory of linear algebraic groups.


Computation with Finitely Presented Groups

Computation with Finitely Presented Groups

Author: Charles C. Sims

Publisher: Cambridge University Press

Published: 1994-01-28

Total Pages: 624

ISBN-13: 0521432138

DOWNLOAD EBOOK

Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.


Group Theory in the Bedroom, and Other Mathematical Diversions

Group Theory in the Bedroom, and Other Mathematical Diversions

Author: Brian Hayes

Publisher: Macmillan + ORM

Published: 2008-04-01

Total Pages: 284

ISBN-13: 1429938579

DOWNLOAD EBOOK

“A refreshing collection of superb mathematical essays . . . from choosing up sides to choosing names, the topics are intriguingly nonstandard . . . First-rate.” —John Allen Paulos, author of Innumeracy A science and technology journalist and essayist whose work has appeared in multiple anthologies, Brian Hayes now presents a selection of his most memorable pieces—including the National Magazine Award–winning “Clock of Ages”—in this enjoyable volume. In addition, Hayes embellishes the collection with an overall scene-setting preface, reconfigured illustrations, and a refreshingly self-critical “Afterthoughts” section appended to each essay. “You don’t have to be a geek to appreciate Hayes’s lively, self-effacing style . . . The first essay explains how clockmakers developed the gears and linkages that enabled fabled medieval clocks to reach remarkable accuracy, as well as predict the day Easter would fall on. Other essays celebrate the notion of random numbers and why they are so hard to achieve. Numerical analysis also plays a role in economic models based on the kinetic theory of gases or simplified markets involving iterations of buying and selling. Hayes goes on to explain how statistics have been applied to compute which quarrels—from interpersonal to world wars—are the deadliest (surprising results here) . . . Challenging but rewarding for anyone intrigued by numbers.” —Kirkus Reviews “As much as any book I can name, Group Theory in the Bedroom conveys to a general audience the playfulness involved in doing mathematics: how questions arise as a form of play, how our first attempts at answering questions usually seem naive in hindsight but are crucial for finding eventual solutions, and how a good solution just feels right.” —David Austin, Notices of the AMS


A Group Theoretic Approach to Quantum Information

A Group Theoretic Approach to Quantum Information

Author: Masahito Hayashi

Publisher: Springer

Published: 2016-10-31

Total Pages: 240

ISBN-13: 331945241X

DOWNLOAD EBOOK

This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.


Advanced Topics in Computational Number Theory

Advanced Topics in Computational Number Theory

Author: Henri Cohen

Publisher: Springer Science & Business Media

Published: 2012-10-29

Total Pages: 591

ISBN-13: 1441984895

DOWNLOAD EBOOK

Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.


Classical and Quantum Computation

Classical and Quantum Computation

Author: Alexei Yu. Kitaev

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 274

ISBN-13: 0821832298

DOWNLOAD EBOOK

An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.


Good Math

Good Math

Author: Mark C. Chu-Carroll

Publisher: Pragmatic Bookshelf

Published: 2013-07-18

Total Pages: 261

ISBN-13: 168050360X

DOWNLOAD EBOOK

Mathematics is beautiful--and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you've ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of computer on your desk, this is the book for you. Why do Roman numerals persist? How do we know that some infinities are larger than others? And how can we know for certain a program will ever finish? In this fast-paced tour of modern and not-so-modern math, computer scientist Mark Chu-Carroll explores some of the greatest breakthroughs and disappointments of more than two thousand years of mathematical thought. There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular "Good Math" blog, you'll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird. Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing. If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark's book will both entertain and enlighten you.