Graphical models--a subset of log-linear models--reveal the interrelationships between multiple variables and features of the underlying conditional independence. Following the theorem-proof-remarks format, this introduction to the use of graphical models in the description and modeling of multivariate systems covers conditional independence, several types of independence graphs, Gaussian models, issues in model selection, regression and decomposition. Many numerical examples and exercises with solutions are included.
This book brings the power of multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source, shareware program R, Professor Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays, linear algebra, univariate, bivariate and multivariate normal distributions, factor methods, linear regression, discrimination and classification, clustering, time series models, and additional methods. Zelterman uses practical examples from diverse disciplines to welcome readers from a variety of academic specialties. Those with backgrounds in statistics will learn new methods while they review more familiar topics. Chapters include exercises, real data sets, and R implementations. The data are interesting, real-world topics, particularly from health and biology-related contexts. As an example of the approach, the text examines a sample from the Behavior Risk Factor Surveillance System, discussing both the shortcomings of the data as well as useful analyses. The text avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary.
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Real-world problems and data sets are the backbone of this book. Applied Multivariate Statistics with SAS Software, Second Edition provides a unique approach to the topic, integrating statistical methods, data analysis, and applications. Now extensively revised, the book includes new information on mixed effects models, applications of the MIXED procedure, regression diagnostics with the corresponding IML procedure code, and covariance structures. The authors' approach to the information aids professors, researchers, and students in a variety of disciplines and industries.
The authors have cleverly used exercises and their solutions to explore the concepts of multivariate data analysis. Broken down into three sections, this book has been structured to allow students in economics and finance to work their way through a well formulated exploration of this core topic. The first part of this book is devoted to graphical techniques. The second deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The final section contains a wide variety of exercises in applied multivariate data analysis.
A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.
Multivariate Analysis for the Behavioral Sciences, Second Edition is designed to show how a variety of statistical methods can be used to analyse data collected by psychologists and other behavioral scientists. Assuming some familiarity with introductory statistics, the book begins by briefly describing a variety of study designs used in the behavioral sciences, and the concept of models for data analysis. The contentious issues of p-values and confidence intervals are also discussed in the introductory chapter. After describing graphical methods, the book covers regression methods, including simple linear regression, multiple regression, locally weighted regression, generalized linear models, logistic regression, and survival analysis. There are further chapters covering longitudinal data and missing values, before the last seven chapters deal with multivariate analysis, including principal components analysis, factor analysis, multidimensional scaling, correspondence analysis, and cluster analysis. Features: Presents an accessible introduction to multivariate analysis for behavioral scientists Contains a large number of real data sets, including cognitive behavioral therapy, crime rates, and drug usage Includes nearly 100 exercises for course use or self-study Supplemented by a GitHub repository with all datasets and R code for the examples and exercises Theoretical details are separated from the main body of the text Suitable for anyone working in the behavioral sciences with a basic grasp of statistics
Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Methods of Multivariate Analysis was among those chosen. When measuring several variables on a complex experimental unit, it is often necessary to analyze the variables simultaneously, rather than isolate them and consider them individually. Multivariate analysis enables researchers to explore the joint performance of such variables and to determine the effect of each variable in the presence of the others. The Second Edition of Alvin Rencher's Methods of Multivariate Analysis provides students of all statistical backgrounds with both the fundamental and more sophisticated skills necessary to master the discipline. To illustrate multivariate applications, the author provides examples and exercises based on fifty-nine real data sets from a wide variety of scientific fields. Rencher takes a "methods" approach to his subject, with an emphasis on how students and practitioners can employ multivariate analysis in real-life situations. The Second Edition contains revised and updated chapters from the critically acclaimed First Edition as well as brand-new chapters on: Cluster analysis Multidimensional scaling Correspondence analysis Biplots Each chapter contains exercises, with corresponding answers and hints in the appendix, providing students the opportunity to test and extend their understanding of the subject. Methods of Multivariate Analysis provides an authoritative reference for statistics students as well as for practicing scientists and clinicians.