Graphical Enumeration deals with the enumeration of various kinds of graphs. Topics covered range from labeled enumeration and George Pólya's theorem to rooted and unrooted trees, graphs and digraphs, and power group enumeration. Superposition, blocks, and asymptotics are also discussed. A number of unsolved enumeration problems are presented. Comprised of 10 chapters, this book begins with an overview of labeled graphs, followed by a description of the basic enumeration theorem of Pólya. The next three chapters count an enormous variety of trees, graphs, and digraphs. The Power Group Enumeration Theorem is then described together with some of its applications, including the enumeration of self-complementary graphs and digraphs and finite automata. Two other chapters focus on the counting of superposition and blocks, while another chapter is devoted to asymptotic numbers that are developed for several different graphical structures. The book concludes with a comprehensive definitive list of unsolved graphical enumeration problems. This monograph will be of interest to both students and practitioners of mathematics.
In 1937 there appeared a paper that was to have a profound influence on the progress of combinatorial enumeration, both in its theoretical and applied aspects. Entitled Kombinatorische Anzahlbest immungen jUr Gruppen, Graphen und chemische Verbindungen, it was published in Acta Mathematica, Vol. 68, pp. 145 to 254. Its author, George Polya, was already a mathematician of considerable stature, well-known for outstanding work in many branches of mathematics, particularly analysis. The paper in Question was unusual in that it depended almost entirely on a single theorem -- the "Hauptsatz" of Section 4 -- a theorem which gave a method for solving a general type of enumera tion problem. On the face of it, this is not something that one would expect to run to over 100 pages. Yet the range of the applica tions of the theorem and of its ramifications was enormous, as Polya clearly showed. In the various sections of his paper he explored many applications to the enumeration of graphs, principally trees, and of chemical isomers, using his theorem to present a comprehen sive and unified treatment of problems which had previously been solved, if at all, only by ad hoc methods. In the final section he investigated the asymptotic properties of these enumerational results, bringing to bear his formidable insight as an analyst
This research monograph summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian Cycle and the Travelling Salesman Problems - into convex domains where continuum analysis can be carried out. Arguably, the inherent difficulty of these, now classical, problems stems precisely from the discrete nature of domains in which these problems are posed. The convexification of domains underpinning these results is achieved by assigning probabilistic interpretation to key elements of the original deterministic problems. In particular, the approaches summarized here build on a technique that embeds Hamiltonian Cycle and Travelling Salesman Problems in a structured singularly perturbed Markov decision process. The unifying idea is to interpret subgraphs traced out by deterministic policies (including Hamiltonian cycles, if any) as extreme points of a convex polyhedron in a space filled with randomized policies. The above innovative approach has now evolved to the point where there are many, both theoretical and algorithmic, results that exploit the nexus between graph theoretic structures and both probabilistic and algebraic entities of related Markov chains. The latter include moments of first return times, limiting frequencies of visits to nodes, or the spectra of certain matrices traditionally associated with the analysis of Markov chains. However, these results and algorithms are dispersed over many research papers appearing in journals catering to disparate audiences. As a result, the published manuscripts are often written in a very terse manner and use disparate notation, thereby making it difficult for new researchers to make use of the many reported advances. Hence the main purpose of this book is to present a concise and yet easily accessible synthesis of the majority of the theoretical and algorithmic results obtained so far. In addition, the book discusses numerous open questions and problems that arise from this body of work and which are yet to be fully solved. The approach casts the Hamiltonian Cycle Problem in a mathematical framework that permits analytical concepts and techniques, not used hitherto in this context, to be brought to bear to further clarify both the underlying difficulty of NP-completeness of this problem and the relative exceptionality of truly difficult instances. Finally, the material is arranged in such a manner that the introductory chapters require very little mathematical background and discuss instances of graphs with interesting structures that motivated a lot of the research in this topic. More difficult results are introduced later and are illustrated with numerous examples.
Presented in 1962–63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics. Lectures by this volume's editor, Frank Harary, include "Some Theorems and Concepts of Graph Theory," "Topological Concepts in Graph Theory," "Graphical Reconstruction," and other introductory talks. A series of invited lectures follows, featuring presentations by other authorities on the faculty of University College as well as visiting scholars. These include "Extremal Problems in Graph Theory" by Paul Erdös, "Complete Bipartite Graphs: Decomposition into Planar Subgraphs," by Lowell W. Beineke, "Graphs and Composite Games," by Cedric A. B. Smith, and several others.
Notwithstanding its title, the reader will not find in this book a systematic account of this huge subject. Certain classical aspects have been passed by, and the true title ought to be "Various questions of elementary combina torial analysis". For instance, we only touch upon the subject of graphs and configurations, but there exists a very extensive and good literature on this subject. For this we refer the reader to the bibliography at the end of the volume. The true beginnings of combinatorial analysis (also called combina tory analysis) coincide with the beginnings of probability theory in the 17th century. For about two centuries it vanished as an autonomous sub ject. But the advance of statistics, with an ever-increasing demand for configurations as well as the advent and development of computers, have, beyond doubt, contributed to reinstating this subject after such a long period of negligence. For a long time the aim of combinatorial analysis was to count the different ways of arranging objects under given circumstances. Hence, many of the traditional problems of analysis or geometry which are con cerned at a certain moment with finite structures, have a combinatorial character. Today, combinatorial analysis is also relevant to problems of existence, estimation and structuration, like all other parts of mathema tics, but exclusively forjinite sets.
Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d
The articles collected here are the texts of the invited lectures given at the Eighth British Combinatorial Conference held at University College, Swansea. The contributions reflect the scope and breadth of application of combinatorics, and are up-to-date reviews by mathematicians engaged in current research. This volume will be of use to all those interested in combinatorial ideas, whether they be mathematicians, scientists or engineers concerned with the growing number of applications.
Unlike in the related area of bioinformatics, few books currently exist that document the techniques, tools, and algorithms of chemoinformatics. Bringing together worldwide experts in the field, the Handbook of Chemoinformatics Algorithms provides an overview of the most common chemoinformatics algorithms in a single source.After a historical persp
This concise and self-contained introduction builds up the spectral theory of graphs from scratch, with linear algebra and the theory of polynomials developed in the later parts. The book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and effective resistance matrices of a graph. The goal of the book is to collect spectral properties that may help to understand the behavior or main characteristics of real-world networks. The chapter on spectra of complex networks illustrates how the theory may be applied to deduce insights into real-world networks. The second edition contains new chapters on topics in linear algebra and on the effective resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices and the Laplacian describe linear processes, such as the flow of current, on a graph. The concepts of spectral sparsification and graph neural networks are included.