Graph Theory and Combinatorial Biology
Author: László Lovász
Publisher:
Published: 1999
Total Pages: 424
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: László Lovász
Publisher:
Published: 1999
Total Pages: 424
ISBN-13:
DOWNLOAD EBOOKAuthor: Fred Roberts
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 345
ISBN-13: 1468463810
DOWNLOAD EBOOKThis IMA Volume in Mathematics and its Applications Applications of Combinatorics and Graph Theory to the Biological and Social Sciences is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on APPLIED COMBINATORICS. We are grateful to the Scientific Committee: Victor Klee (Chairman), Daniel Kleitman, Dijen Ray-Chaudhuri and Dennis Stanton for planning and implementing an exciting and stimulating year long program. We especially thank the Workshop Organizers, Joel Cohen and Fred Roberts, for organizing a workshop which brought together many of the major figures in a variety of research fields connected with the application of combinatorial ideas to the social and biological sciences. A vner Friedman Willard Miller APPLICATIONS OF COMBINATORICS AND GRAPH THEORY TO THE BIOLOGICAL AND SOCIAL SCIENCES: SEVEN FUNDAMENTAL IDEAS FRED S. RoBERTS* Abstract. To set the stage for the other papers in this volume, seven fundamental concepts which arise in the applications of combinatorics and graph theory in the biological and social sciences are described. These ideas are: RNA chains as "words" in a 4 letter alphabet; interval graphs; competition graphs or niche overlap graphs; qualitative stability; balanced signed graphs; social welfare functions; and semiorders. For each idea, some basic results are presented, some recent results are given, and some open problems are mentioned.
Author: Raina Robeva
Publisher: Academic Press
Published: 2018-10-08
Total Pages: 436
ISBN-13: 0128140690
DOWNLOAD EBOOKAlgebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. - Integrates a comprehensive selection of tools from computational biology into educational or research programs - Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations - Contains scalable material for use in undergraduate and graduate-level classes and research projects - Introduces the reader to freely-available professional software - Supported by illustrative datasets and adaptable computer code
Author: J. Akiyama
Publisher: Elsevier
Published: 1988-01-01
Total Pages: 425
ISBN-13: 0080867782
DOWNLOAD EBOOKGraph Theory and Applications
Author: Raina Robeva
Publisher: Academic Press
Published: 2015-05-09
Total Pages: 383
ISBN-13: 0128012714
DOWNLOAD EBOOKWritten by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources
Author: Fan Chung
Publisher: CRC Press
Published: 2019-11-15
Total Pages: 443
ISBN-13: 100075183X
DOWNLOAD EBOOK50 Years of Combinatorics, Graph Theory, and Computing advances research in discrete mathematics by providing current research surveys, each written by experts in their subjects. The book also celebrates outstanding mathematics from 50 years at the Southeastern International Conference on Combinatorics, Graph Theory & Computing (SEICCGTC). The conference is noted for the dissemination and stimulation of research, while fostering collaborations among mathematical scientists at all stages of their careers. The authors of the chapters highlight open questions. The sections of the book include: Combinatorics; Graph Theory; Combinatorial Matrix Theory; Designs, Geometry, Packing and Covering. Readers will discover the breadth and depth of the presentations at the SEICCGTC, as well as current research in combinatorics, graph theory and computer science. Features: Commemorates 50 years of the Southeastern International Conference on Combinatorics, Graph Theory & Computing with research surveys Surveys highlight open questions to inspire further research Chapters are written by experts in their fields Extensive bibliographies are provided at the end of each chapter
Author: John Harris
Publisher: Springer Science & Business Media
Published: 2009-04-03
Total Pages: 392
ISBN-13: 0387797114
DOWNLOAD EBOOKThese notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
Author: Sriram Pemmaraju
Publisher: Cambridge University Press
Published: 2009-10-15
Total Pages: 615
ISBN-13: 1107268710
DOWNLOAD EBOOKThis book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Author: Narsingh Deo
Publisher: PHI Learning Pvt. Ltd.
Published: 1974
Total Pages: 478
ISBN-13: 9788120301450
DOWNLOAD EBOOKBecause of its inherent simplicity, graph theory has a wide range of applications in engineering, and in physical sciences. It has of course uses in social sciences, in linguistics and in numerous other areas. In fact, a graph can be used to represent almost any physical situation involving discrete objects and the relationship among them. Now with the solutions to engineering and other problems becoming so complex leading to larger graphs, it is virtually difficult to analyze without the use of computers. This book is recommended in IIT Kharagpur, West Bengal for B.Tech Computer Science, NIT Arunachal Pradesh, NIT Nagaland, NIT Agartala, NIT Silchar, Gauhati University, Dibrugarh University, North Eastern Regional Institute of Management, Assam Engineering College, West Bengal Univerity of Technology (WBUT) for B.Tech, M.Tech Computer Science, University of Burdwan, West Bengal for B.Tech. Computer Science, Jadavpur University, West Bengal for M.Sc. Computer Science, Kalyani College of Engineering, West Bengal for B.Tech. Computer Science. Key Features: This book provides a rigorous yet informal treatment of graph theory with an emphasis on computational aspects of graph theory and graph-theoretic algorithms. Numerous applications to actual engineering problems are incorpo-rated with software design and optimization topics.
Author: Philippe Flajolet
Publisher: Cambridge University Press
Published: 2009-01-15
Total Pages: 825
ISBN-13: 1139477161
DOWNLOAD EBOOKAnalytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.