Graph Data Modeling in Python

Graph Data Modeling in Python

Author: Gary Hutson

Publisher: Packt Publishing Ltd

Published: 2023-06-30

Total Pages: 236

ISBN-13: 1804619345

DOWNLOAD EBOOK

Learn how to transform, store, evolve, refactor, model, and create graph projections using the Python programming language Purchase of the print or Kindle book includes a free PDF eBook Key Features Transform relational data models into graph data model while learning key applications along the way Discover common challenges in graph modeling and analysis, and learn how to overcome them Practice real-world use cases of community detection, knowledge graph, and recommendation network Book Description Graphs have become increasingly integral to powering the products and services we use in our daily lives, driving social media, online shopping recommendations, and even fraud detection. With this book, you'll see how a good graph data model can help enhance efficiency and unlock hidden insights through complex network analysis. Graph Data Modeling in Python will guide you through designing, implementing, and harnessing a variety of graph data models using the popular open source Python libraries NetworkX and igraph. Following practical use cases and examples, you'll find out how to design optimal graph models capable of supporting a wide range of queries and features. Moreover, you'll seamlessly transition from traditional relational databases and tabular data to the dynamic world of graph data structures that allow powerful, path-based analyses. As well as learning how to manage a persistent graph database using Neo4j, you'll also get to grips with adapting your network model to evolving data requirements. By the end of this book, you'll be able to transform tabular data into powerful graph data models. In essence, you'll build your knowledge from beginner to advanced-level practitioner in no time. What you will learn Design graph data models and master schema design best practices Work with the NetworkX and igraph frameworks in Python Store, query, ingest, and refactor graph data Store your graphs in memory with Neo4j Build and work with projections and put them into practice Refactor schemas and learn tactics for managing an evolved graph data model Who this book is for If you are a data analyst or database developer interested in learning graph databases and how to curate and extract data from them, this is the book for you. It is also beneficial for data scientists and Python developers looking to get started with graph data modeling. Although knowledge of Python is assumed, no prior experience in graph data modeling theory and techniques is required.


Handbook of Graphs and Networks in People Analytics

Handbook of Graphs and Networks in People Analytics

Author: Keith McNulty

Publisher: CRC Press

Published: 2022-06-19

Total Pages: 266

ISBN-13: 100059727X

DOWNLOAD EBOOK

Handbook of Graphs and Networks in People Analytics: With Examples in R and Python covers the theory and practical implementation of graph methods in R and Python for the analysis of people and organizational networks. Starting with an overview of the origins of graph theory and its current applications in the social sciences, the book proceeds to give in-depth technical instruction on how to construct and store graphs from data, how to visualize those graphs compellingly and how to convert common data structures into graph-friendly form. The book explores critical elements of network analysis in detail, including the measurement of distance and centrality, the detection of communities and cliques, and the analysis of assortativity and similarity. An extension chapter offers an introduction to graph database technologies. Real data sets from various research contexts are used for both instruction and for end of chapter practice exercises and a final chapter contains data sets and exercises ideal for larger personal or group projects of varying difficulty level. Key features: Immediately implementable code, with extensive and varied illustrations of graph variants and layouts. Examples and exercises across a variety of real-life contexts including business, politics, education, social media and crime investigation. Dedicated chapter on graph visualization methods. Practical walkthroughs of common methodological uses: finding influential actors in groups, discovering hidden community structures, facilitating diverse interaction in organizations, detecting political alignment, determining what influences connection and attachment. Various downloadable data sets for use both in class and individual learning projects. Final chapter dedicated to individual or group project examples.


Graph Algorithms

Graph Algorithms

Author: Mark Needham

Publisher: "O'Reilly Media, Inc."

Published: 2019-05-16

Total Pages: 297

ISBN-13: 1492047635

DOWNLOAD EBOOK

Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark


Graph Databases in Action

Graph Databases in Action

Author: Dave Bechberger

Publisher: Manning Publications

Published: 2020-11-24

Total Pages: 336

ISBN-13: 1617296376

DOWNLOAD EBOOK

Graph Databases in Action introduces you to graph database concepts by comparing them with relational database constructs. You'll learn just enough theory to get started, then progress to hands-on development. Discover use cases involving social networking, recommendation engines, and personalization. Summary Relationships in data often look far more like a web than an orderly set of rows and columns. Graph databases shine when it comes to revealing valuable insights within complex, interconnected data such as demographics, financial records, or computer networks. In Graph Databases in Action, experts Dave Bechberger and Josh Perryman illuminate the design and implementation of graph databases in real-world applications. You'll learn how to choose the right database solutions for your tasks, and how to use your new knowledge to build agile, flexible, and high-performing graph-powered applications! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Isolated data is a thing of the past! Now, data is connected, and graph databases—like Amazon Neptune, Microsoft Cosmos DB, and Neo4j—are the essential tools of this new reality. Graph databases represent relationships naturally, speeding the discovery of insights and driving business value. About the book Graph Databases in Action introduces you to graph database concepts by comparing them with relational database constructs. You'll learn just enough theory to get started, then progress to hands-on development. Discover use cases involving social networking, recommendation engines, and personalization. What's inside Graph databases vs. relational databases Systematic graph data modeling Querying and navigating a graph Graph patterns Pitfalls and antipatterns About the reader For software developers. No experience with graph databases required. About the author Dave Bechberger and Josh Perryman have decades of experience building complex data-driven systems and have worked with graph databases since 2014. Table of Contents PART 1 - GETTING STARTED WITH GRAPH DATABASES 1 Introduction to graphs 2 Graph data modeling 3 Running basic and recursive traversals 4 Pathfinding traversals and mutating graphs 5 Formatting results 6 Developing an application PART 2 - BUILDING ON GRAPH DATABASES 7 Advanced data modeling techniques 8 Building traversals using known walks 9 Working with subgraphs PART 3 - MOVING BEYOND THE BASICS 10 Performance, pitfalls, and anti-patterns 11 What's next: Graph analytics, machine learning, and resources


Learning Neo4j

Learning Neo4j

Author: Rik Van Bruggen

Publisher: Packt Publishing Ltd

Published: 2014-08-25

Total Pages: 296

ISBN-13: 1849517177

DOWNLOAD EBOOK

This book is for developers who want an alternative way to store and process data within their applications. No previous graph database experience is required; however, some basic database knowledge will help you understand the concepts more easily.


Graph Algorithms for Data Science

Graph Algorithms for Data Science

Author: Tomaž Bratanic

Publisher: Simon and Schuster

Published: 2024-02-27

Total Pages: 350

ISBN-13: 1617299464

DOWNLOAD EBOOK

Graph Algorithms for Data Science teaches you how to construct graphs from both structured and unstructured data. You'll learn how the flexible Cypher query language can be used to easily manipulate graph structures, and extract amazing insights. Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications. It's filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You'll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects.


Neo4j Graph Data Modeling

Neo4j Graph Data Modeling

Author: Mahesh Lal

Publisher: Packt Publishing Ltd

Published: 2015-07-27

Total Pages: 138

ISBN-13: 178439730X

DOWNLOAD EBOOK

Neo4j is a graph database that allows you to model your data as a graph and find solutions to complex real-world problems that are difficult to solve using any other type of database. This book is designed to help you understand the intricacies of modeling a graph for any domain. The book starts with an example of a graph problem and then introduces you to modeling non-graph problems using Neo4j. Concepts such as the evolution of your database, chains, access control, and recommendations are addressed, along with examples and are modeled in a graph. Throughout the book, you will discover design choices and trade-offs, and understand how and when to use them. By the end of the book, you will be able to effectively use Neo4j to model your database for efficiency and flexibility.


Hands-On Graph Analytics with Neo4j

Hands-On Graph Analytics with Neo4j

Author: Estelle Scifo

Publisher: Packt Publishing Ltd

Published: 2020-08-21

Total Pages: 496

ISBN-13: 1839215666

DOWNLOAD EBOOK

Discover how to use Neo4j to identify relationships within complex and large graph datasets using graph modeling, graph algorithms, and machine learning Key FeaturesGet up and running with graph analytics with the help of real-world examplesExplore various use cases such as fraud detection, graph-based search, and recommendation systemsGet to grips with the Graph Data Science library with the help of examples, and use Neo4j in the cloud for effective application scalingBook Description Neo4j is a graph database that includes plugins to run complex graph algorithms. The book starts with an introduction to the basics of graph analytics, the Cypher query language, and graph architecture components, and helps you to understand why enterprises have started to adopt graph analytics within their organizations. You’ll find out how to implement Neo4j algorithms and techniques and explore various graph analytics methods to reveal complex relationships in your data. You’ll be able to implement graph analytics catering to different domains such as fraud detection, graph-based search, recommendation systems, social networking, and data management. You’ll also learn how to store data in graph databases and extract valuable insights from it. As you become well-versed with the techniques, you’ll discover graph machine learning in order to address simple to complex challenges using Neo4j. You will also understand how to use graph data in a machine learning model in order to make predictions based on your data. Finally, you’ll get to grips with structuring a web application for production using Neo4j. By the end of this book, you’ll not only be able to harness the power of graphs to handle a broad range of problem areas, but you’ll also have learned how to use Neo4j efficiently to identify complex relationships in your data. What you will learnBecome well-versed with Neo4j graph database building blocks, nodes, and relationshipsDiscover how to create, update, and delete nodes and relationships using Cypher queryingUse graphs to improve web search and recommendationsUnderstand graph algorithms such as pathfinding, spatial search, centrality, and community detectionFind out different steps to integrate graphs in a normal machine learning pipelineFormulate a link prediction problem in the context of machine learningImplement graph embedding algorithms such as DeepWalk, and use them in Neo4j graphsWho this book is for This book is for data analysts, business analysts, graph analysts, and database developers looking to store and process graph data to reveal key data insights. This book will also appeal to data scientists who want to build intelligent graph applications catering to different domains. Some experience with Neo4j is required.


Graph Data Science with Python and Neo4j

Graph Data Science with Python and Neo4j

Author: Timothy Eastridge

Publisher: Orange Education Pvt Ltd

Published: 2024-03-11

Total Pages: 226

ISBN-13: 8197081964

DOWNLOAD EBOOK

Practical approaches to leveraging graph data science to solve real-world challenges. KEY FEATURES ● Explore the fundamentals of graph data science, its importance, and applications. ● Learn how to set up Python and Neo4j environments for graph data analysis. ● Discover techniques to visualize complex graph networks for better understanding. DESCRIPTION Graph Data Science with Python and Neo4j is your ultimate guide to unleashing the potential of graph data science by blending Python's robust capabilities with Neo4j's innovative graph database technology. From fundamental concepts to advanced analytics and machine learning techniques, you'll learn how to leverage interconnected data to drive actionable insights. Beyond theory, this book focuses on practical application, providing you with the hands-on skills needed to tackle real-world challenges. You'll explore cutting-edge integrations with Large Language Models (LLMs) like ChatGPT to build advanced recommendation systems. With intuitive frameworks and interconnected data strategies, you'll elevate your analytical prowess. This book offers a straightforward approach to mastering graph data science. With detailed explanations, real-world examples, and a dedicated GitHub repository filled with code examples, this book is an indispensable resource for anyone seeking to enhance their data practices with graph technology. Join us on this transformative journey across various industries, and unlock new, actionable insights from your data. WHAT WILL YOU LEARN ● Set up and utilize Python and Neo4j environments effectively for graph analysis. ● Import and manipulate data within the Neo4j graph database using Cypher Query Language. ● Visualize complex graph networks to gain insights into data relationships and patterns. ● Enhance data analysis by integrating ChatGPT for context-rich data enrichment. ● Explore advanced topics including Neo4j vector indexing and Retrieval-Augmented Generation (RAG). ● Develop recommendation engines leveraging graph embeddings for personalized suggestions. ● Build and deploy recommendation systems and fraud detection models using graph techniques. ● Gain insights into the future trends and advancements shaping the field of graph data science. WHO IS THIS BOOK FOR? This book caters to a diverse audience interested in leveraging the power of graph data science using Python and Neo4j. It includes Data Science Professionals, Software Engineers, Academic Researchers, Business Analysts, and Technology Hobbyists. This comprehensive book equips readers from various backgrounds to effectively utilize graph data science in their respective fields. TABLE OF CONTENTS 1. Introduction to Graph Data Science 2. Getting Started with Python and Neo4j 3. Import Data into the Neo4j Graph Database 4. Cypher Query Language 5. Visualizing Graph Networks 6. Enriching Neo4j Data with ChatGPT 7. Neo4j Vector Index and Retrieval-Augmented Generation (RAG) 8. Graph Algorithms in Neo4j 9. Recommendation Engines Using Embeddings 10. Fraud Detection CLOSING SUMMARY The Future of Graph Data Science Index


Graph Machine Learning

Graph Machine Learning

Author: Claudio Stamile

Publisher: Packt Publishing Ltd

Published: 2021-06-25

Total Pages: 338

ISBN-13: 1800206755

DOWNLOAD EBOOK

Build machine learning algorithms using graph data and efficiently exploit topological information within your models Key Features Implement machine learning techniques and algorithms in graph data Identify the relationship between nodes in order to make better business decisions Apply graph-based machine learning methods to solve real-life problems Book Description Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You'll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you'll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You'll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications. What you will learn Write Python scripts to extract features from graphs Distinguish between the main graph representation learning techniques Learn how to extract data from social networks, financial transaction systems, for text analysis, and more Implement the main unsupervised and supervised graph embedding techniques Get to grips with shallow embedding methods, graph neural networks, graph regularization methods, and more Deploy and scale out your application seamlessly Who this book is for This book is for data scientists, data analysts, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance using machine learning. It will also be useful for machine learning developers or anyone who wants to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required, alongside a solid understanding of ML basics. You'll also need intermediate-level Python programming knowledge to get started with this book.