Applied Optimization with MATLAB Programming

Applied Optimization with MATLAB Programming

Author: P. Venkataraman

Publisher: John Wiley & Sons

Published: 2009-03-23

Total Pages: 546

ISBN-13: 047008488X

DOWNLOAD EBOOK

Technology/Engineering/Mechanical Provides all the tools needed to begin solving optimization problems using MATLAB® The Second Edition of Applied Optimization with MATLAB® Programming enables readers to harness all the features of MATLAB® to solve optimization problems using a variety of linear and nonlinear design optimization techniques. By breaking down complex mathematical concepts into simple ideas and offering plenty of easy-to-follow examples, this text is an ideal introduction to the field. Examples come from all engineering disciplines as well as science, economics, operations research, and mathematics, helping readers understand how to apply optimization techniques to solve actual problems. This Second Edition has been thoroughly revised, incorporating current optimization techniques as well as the improved MATLAB® tools. Two important new features of the text are: Introduction to the scan and zoom method, providing a simple, effective technique that works for unconstrained, constrained, and global optimization problems New chapter, Hybrid Mathematics: An Application, using examples to illustrate how optimization can develop analytical or explicit solutions to differential systems and data-fitting problems Each chapter ends with a set of problems that give readers an opportunity to put their new skills into practice. Almost all of the numerical techniques covered in the text are supported by MATLAB® code, which readers can download on the text's companion Web site www.wiley.com/go/venkat2e and use to begin solving problems on their own. This text is recommended for upper-level undergraduate and graduate students in all areas of engineering as well as other disciplines that use optimization techniques to solve design problems.


Practical Optimization with MATLAB

Practical Optimization with MATLAB

Author: Mircea Ancău

Publisher: Cambridge Scholars Publishing

Published: 2019-10-03

Total Pages: 291

ISBN-13: 1527540987

DOWNLOAD EBOOK

This easy-to-follow guide provides academics and industrial engineers with a state-of-the-art numerical approach to the most frequent technical and economical optimization methods. In an engaging manner, it provides the reader with not only a systematic and comprehensive study, but also with necessary and directly implementable code written in the versatile and readily available platform Matlab. The book offers optimization methods for univariate and multivariate constrained or unconstrained functions, general optimization methods and multicriteria optimization methods; provides intuitively, step-by-step explained sample Matlab code, that can be easily adjusted to meet individual requirements; and uses a clear, concise presentation style, which will be suited to readers even without a programming background, as well as to students preparing for examinations in optimization methods.


Optimization in Practice with MATLAB

Optimization in Practice with MATLAB

Author: Achille Messac

Publisher: Cambridge University Press

Published: 2015-03-19

Total Pages: 503

ISBN-13: 1107109183

DOWNLOAD EBOOK

This textbook is designed for students and industry practitioners for a first course in optimization integrating MATLAB® software.


Optimization in Chemical Engineering

Optimization in Chemical Engineering

Author: Suman Dutta

Publisher: Cambridge University Press

Published: 2016-03-11

Total Pages: 384

ISBN-13: 1316691799

DOWNLOAD EBOOK

Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimisation techniques is to measure the maximum or minimum value of a function depending on the circumstances. This book discusses problem formulation and problem solving with the help of algorithms such as secant method, quasi-Newton method, linear programming and dynamic programming. It also explains important chemical processes such as fluid flow systems, heat exchangers, chemical reactors and distillation systems using solved examples. The book begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg–Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies the multi-objective optimization technique and its applications in chemical engineering and also discusses the theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS.


Solving Optimization Problems with MATLAB®

Solving Optimization Problems with MATLAB®

Author: Dingyü Xue

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-04-06

Total Pages: 342

ISBN-13: 3110667010

DOWNLOAD EBOOK

This book focuses on solving optimization problems with MATLAB. Descriptions and solutions of nonlinear equations of any form are studied first. Focuses are made on the solutions of various types of optimization problems, including unconstrained and constrained optimizations, mixed integer, multiobjective and dynamic programming problems. Comparative studies and conclusions on intelligent global solvers are also provided.


MATLAB Optimization Techniques

MATLAB Optimization Techniques

Author: Cesar Lopez

Publisher: Apress

Published: 2014-11-12

Total Pages: 284

ISBN-13: 1484202929

DOWNLOAD EBOOK

MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Optimization Techniques introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. It begins by introducing the MATLAB environment and the structure of MATLAB programming before moving on to the mathematics of optimization. The central part of the book is dedicated to MATLAB’s Optimization Toolbox, which implements state-of-the-art algorithms for solving multiobjective problems, non-linear minimization with boundary conditions and restrictions, minimax optimization, semi-infinitely constrained minimization and linear and quadratic programming. A wide range of exercises and examples are included, illustrating the most widely used optimization methods.


Design Optimization using MATLAB and SOLIDWORKS

Design Optimization using MATLAB and SOLIDWORKS

Author: Krishnan Suresh

Publisher: Cambridge University Press

Published: 2021-04-29

Total Pages: 395

ISBN-13: 110849160X

DOWNLOAD EBOOK

A hands-on text integrating mathematics, numerics and applications of optimization, with MATLAB code illustrating every concept.


Introduction to Stochastic Search and Optimization

Introduction to Stochastic Search and Optimization

Author: James C. Spall

Publisher: John Wiley & Sons

Published: 2005-03-11

Total Pages: 620

ISBN-13: 0471441902

DOWNLOAD EBOOK

* Unique in its survey of the range of topics. * Contains a strong, interdisciplinary format that will appeal to both students and researchers. * Features exercises and web links to software and data sets.


Metaheuristics: Outlines, MATLAB Codes and Examples

Metaheuristics: Outlines, MATLAB Codes and Examples

Author: Ali Kaveh

Publisher: Springer

Published: 2019-03-29

Total Pages: 192

ISBN-13: 3030040674

DOWNLOAD EBOOK

The book presents eight well-known and often used algorithms besides nine newly developed algorithms by the first author and his students in a practical implementation framework. Matlab codes and some benchmark structural optimization problems are provided. The aim is to provide an efficient context for experienced researchers or readers not familiar with theory, applications and computational developments of the considered metaheuristics. The information will also be of interest to readers interested in application of metaheuristics for hard optimization, comparing conceptually different metaheuristics and designing new metaheuristics.


Engineering Optimization

Engineering Optimization

Author: Xin-She Yang

Publisher: John Wiley & Sons

Published: 2010-07-20

Total Pages: 377

ISBN-13: 0470640413

DOWNLOAD EBOOK

An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.