Gleason's Theorem and Its Applications

Gleason's Theorem and Its Applications

Author: Anatolij Dvurecenskij

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 338

ISBN-13: 940158222X

DOWNLOAD EBOOK

For many years physics and mathematics have had a fruitful influence on one another. Classical mechanics and celestial mechanics have produced very deep problems whose solutions have enhanced mathematics. On the other hand, mathematics itself has found interesting theories which then (sometimes after many years) have been reflected in physics, confirming the thesis that nothing is more practical than a good theory. The same is true for the younger physical discipline -of quantum mechanics. In the 1930s two events, not at all random, became: The mathematical back grounds of both quantum mechanics and probability theory. In 1936, G. Birkhoff and J. von Neumann published their historical paper "The logic of quantum mechanics", in which a quantum logic was suggested. The mathematical foundations of quantum mechanics remains an outstanding problem of mathematics, physics, logic and philosophy even today. The theory of quantum logics is a major stream in this axiomatical knowledge river, where L(H), the system of all closed subspaces of a Hilbert space H, due to J. von Neumann, plays an important role. When A.M. Gleason published his solution to G. Mackey's problem showing that any state (= probability measure) corresponds to a density operator, he probably did not anticipate that his solution would become a cornerstone of ax iomati cal theory of quantum mechanics nor that it would provide many interesting applications to mathematics.


Fundamental Mathematical Structures of Quantum Theory

Fundamental Mathematical Structures of Quantum Theory

Author: Valter Moretti

Publisher: Springer

Published: 2019-06-20

Total Pages: 345

ISBN-13: 3030183467

DOWNLOAD EBOOK

This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.


Wigner-Type Theorems for Hilbert Grassmannians

Wigner-Type Theorems for Hilbert Grassmannians

Author: Mark Pankov

Publisher: Cambridge University Press

Published: 2020-01-16

Total Pages: 155

ISBN-13: 1108848397

DOWNLOAD EBOOK

Wigner's theorem is a fundamental part of the mathematical formulation of quantum mechanics. The theorem characterizes unitary and anti-unitary operators as symmetries of quantum mechanical systems, and is a key result when relating preserver problems to quantum mechanics. At the heart of this book is a geometric approach to Wigner-type theorems, unifying both classical and more recent results. Readers are initiated in a wide range of topics from geometric transformations of Grassmannians to lattices of closed subspaces, before moving on to a discussion of applications. An introduction to all the key aspects of the basic theory is included as are plenty of examples, making this book a useful resource for beginning graduate students and non-experts, as well as a helpful reference for specialist researchers.


Mathematical Methods Of Theoretical Physics

Mathematical Methods Of Theoretical Physics

Author: Karl Svozil

Publisher: World Scientific

Published: 2020-02-24

Total Pages: 331

ISBN-13: 9811208425

DOWNLOAD EBOOK

'This book could serve either as a good reference to remind students about what they have seen in their completed courses or as a starting point to show what needs more investigation. Svozil (Vienna Univ. of Technology) offers a very thorough text that leaves no mathematical area out, but it is best described as giving a synopsis of each application and how it relates to other areas … The text is organized well and provides a good reference list. Summing Up: Recommended. Upper-division undergraduates and graduate students.'CHOICEThis book contains very explicit proofs and demonstrations through examples for a comprehensive introduction to the mathematical methods of theoretical physics. It also combines and unifies many expositions of this subject, suitable for readers with interest in experimental and applied physics.


Handbook of Quantum Logic and Quantum Structures

Handbook of Quantum Logic and Quantum Structures

Author: Kurt Engesser

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 821

ISBN-13: 008055038X

DOWNLOAD EBOOK

Since its inception in the famous 1936 paper by Birkhoff and von Neumann entitled "The logic of quantum mechanics quantum logic, i.e. the logical investigation of quantum mechanics, has undergone an enormous development. Various schools of thought and approaches have emerged and there are a variety of technical results.Quantum logic is a heterogeneous field of research ranging from investigations which may be termed logical in the traditional sense to studies focusing on structures which are on the border between algebra and logic. For the latter structures the term quantum structures is appropriate. The chapters of this Handbook, which are authored by the most eminent scholars in the field, constitute a comprehensive presentation of the main schools, approaches and results in the field of quantum logic and quantum structures. Much of the material presented is of recent origin representing the frontier of the subject. The present volume focuses on quantum structures. Among the structures studied extensively in this volume are, just to name a few, Hilbert lattices, D-posets, effect algebras MV algebras, partially ordered Abelian groups and those structures underlying quantum probability.- Written by eminent scholars in the field of logic- A comprehensive presentation of the theory, approaches and results in the field of quantum logic- Volume focuses on quantum structures


The Geometry of Information Retrieval

The Geometry of Information Retrieval

Author: C. J. van Rijsbergen

Publisher: Cambridge University Press

Published: 2004-08-12

Total Pages: 178

ISBN-13: 9780521838054

DOWNLOAD EBOOK

An important work on a new framework for information retrieval: implications for artificial intelligence, natural language processing.


Nonlinear Functional Analysis and Its Applications

Nonlinear Functional Analysis and Its Applications

Author: S.P. Singh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 408

ISBN-13: 9400946325

DOWNLOAD EBOOK

A NATO Advanced Study Institute on Nonlinear Functional Analysis and Its Applications was held in Hotel Villa del Mare, Maratea, It.a1y during April 22 - May 3, 1985. This volume consists of the Proceedings of the Institute. These Proceedings include the invited lectures and contributed papers given during the Institute. The papers have been refereed. The aim of these lectures was to bring together recent and up-to-date development of the subject, and to give directions for future research. The main topics covered include: degree and generalized degree theory, results related to Hamiltonian Systems, Fixed Point theory, linear and nonlinear Differential and Partial Differential Equations, Theory of Nielsen Numbers, and applications to Dynamical Systems, Bifurcation Theory, Hamiltonian Systems, Minimax Theory, Heat Equations, Pendulum Equation, Nonlinear Boundary Value Problems, and Dirichlet and Neumann problems for elliptic equations and the periodic Dirichlet problem for semilinear beam equations. I express my sincere thanks to Professors F. E. Browder, R. Conti, A. Do1d, D. E. Edmunds and J. Mawhin members of the Advisory Committee.


Hilbert's Fifth Problem and Related Topics

Hilbert's Fifth Problem and Related Topics

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2014-07-18

Total Pages: 354

ISBN-13: 147041564X

DOWNLOAD EBOOK

In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.


The Mathematical Language of Quantum Theory

The Mathematical Language of Quantum Theory

Author: Teiko Heinosaari

Publisher: Cambridge University Press

Published: 2011-12-15

Total Pages: 340

ISBN-13: 1139503995

DOWNLOAD EBOOK

For almost every student of physics, the first course on quantum theory raises a lot of puzzling questions and creates a very uncertain picture of the quantum world. This book presents a clear and detailed exposition of the fundamental concepts of quantum theory: states, effects, observables, channels and instruments. It introduces several up-to-date topics, such as state discrimination, quantum tomography, measurement disturbance and entanglement distillation. A separate chapter is devoted to quantum entanglement. The theory is illustrated with numerous examples, reflecting recent developments in the field. The treatment emphasises quantum information, though its general approach makes it a useful resource for graduate students and researchers in all subfields of quantum theory. Focusing on mathematically precise formulations, the book summarises the relevant mathematics.


Representation of Lie Groups and Special Functions

Representation of Lie Groups and Special Functions

Author: N.Ja. Vilenkin

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 518

ISBN-13: 9401728852

DOWNLOAD EBOOK

In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.