This book examines the process and patterns of glacier-influenced sedimentation on high-latitude continental margins and the geophysical and geological signatures of the resulting sediments and landforms. It contains a range of papers concerning modern and glacially-influenced sedimentation in high-latitude areas from both hemispheres, many of which discuss the relationship between glacier dynamics and the sediments and landforms preserved in the glacimarine environment.
Understanding the sedimentary and geophysical archive of glaciated margins is a complex task that requires integration and analysis of disparate sedimentological and geophysical data. Their analysis is vital for understanding the dynamics of past ice sheets and how they interact with their neighbouring marine basins, on timescales that cannot be captured by observations of the cryosphere today. As resources, sediments deposited on the inner margins of glaciated shelves also exhibit resource potential where more sand-dominated systems occur, acting as reservoirs for both hydrocarbons and water. This book surveys the full gamut of glaciated margins, from deep time (Neoproterozoic, Ordovician and Carboniferous–Permian) to modern high-latitude margins in Canada and Antarctica. This collection of papers is the first attempt to deliberately do this, allowing not only the similarities and differences between modern and ancient glaciated margins to be explored, but also the wide spectrum of their mechanisms of investigation to be probed. Together, these papers offer a high-resolution, spatially and temporally diverse blueprint of the depositional processes, ice sheet dynamics, and basin architectures of the world’s former glaciated margins; a vital resource in advancing understanding of our present and future marine-terminating ice sheet margins.
Although it is generally accepted that the Arctic Ocean is a very sensitive and important region for changes in the global climate, this region is the last major physiographic province of the earth whose short-and long-term geological history is much less known in comparison to other ocean regions. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this harsh, ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. During the the last about 20 years, however, several international and multidisciplinary ship expeditions, including the first scientific drilling on Lomonosov Ridge in 2004, a break-through in Arctic research, were carried out into the central Artic and its surrounding shelf seas. Results from these expeditions have greatly advanced our knowledge on Arctic Ocean paleoenvironments. Published syntheses about the knowledge on Arctic Ocean geology, on the other hand, are based on data available prior to 1990. A comprehensive compilation of data on Arctic Ocean paleoenvironment and its short-and long-term variability based on the huge amount of new data including the ACEX drilling data, has not been available yet. With this book, presenting (1) detailed information on glacio-marine sedimentary processes and geological proxies used for paleoenvironmental reconstructions, and (2) detailed geological data on modern environments, Quaternary variability on different time scales as well as the long-term climate history during Mesozoic-Tertiary times, this gap in knowledge will be filled.*Aimed at specialists and graduates *Presents background research, recent developments, and future trends*Written by a leading scholar and industry expert
Glacier Science and Environmental Change is an authoritative and comprehensive reference work on contemporary issues in glaciology. It explores the interface between glacier science and environmental change, in the past, present, and future. Written by the world’s foremost authorities in the subject and researchers at the scientific frontier where conventional wisdom of approach comes face to face with unsolved problems, this book provides: state-of-the-art reviews of the key topics in glaciology and related disciplines in environmental change cutting-edge case studies of the latest research an interdisciplinary synthesis of the issues that draw together the research efforts of glaciologists and scientists from other areas such as geologists, hydrologists, and climatologists color-plate section (with selected extra figures provided in color at www.blackwellpublishing.com/knight). The topics in this book have been carefully chosen to reflect current priorities in research, the interdisciplinary nature of the subject, and the developing relationship between glaciology and studies of environmental change. Glacier Science and Environmental Change is essential reading for advanced undergraduates, postgraduate research students, and professional researchers in glaciology, geology, geography, geophysics, climatology, and related disciplines.
Associating ice masses with the transport and deposition ofsediments has long formed a central theme in glaciology and glacialgeomorphology. The reason for this focus is clear, in that icemasses are responsible for much of the physical landscape whichcharacterizes the Earth's glaciated regions. This association alsoholds at a variety of scales, for example, from the grain-sizecharacteristics of small-scale moraines to the structuralarchitecture of large-scale, glacigenic sedimentary sequences inboth surface and subaqueous environments. This volume brings numerous state-of-the-art research contributionstogether, each relating to a different physical setting, spatialscale, process or investigative technique. The result is a diverseand interesting collection of papers by glaciologists, numericalmodellers and glacial geologists, which are all linked by the themeof investigating the relationships between the behaviour of icemasses and their resulting sedimentary sequences.
This book on the current state of knowledge of submarine geomorphology aims to achieve the goals of the Submarine Geomorphology working group, set up in 2013, by establishing submarine geomorphology as a field of research, disseminating its concepts and techniques among earth scientists and professionals, and encouraging students to develop their skills and knowledge in this field. Editors have invited 30 experts from around the world to contribute chapters to this book, which is divided into 4 sections – (i) Introduction & history, (ii) Data & methods, (ii) Submarine landforms & processes and (iv) Conclusions & future directions. Each chapter provides a review of a topic, establishes the state-of-the-art, identifies the key research questions that need to be addressed, and delineates a strategy on how to achieve this. Submarine geomorphology is a priority for many research institutions, government authorities and industries globally. The book is useful for undergraduate and graduate students, and professionals with limited training in this field.
Glaciers and Glaciation is the classic textbook for all students of glaciation. Stimulating and accessible, it has established a reputation as a comprehensive and essential resource. In this new edition, the text, references and illustrations have been thoroughly updated to give today's reader an up-to-the minute overview of the nature, origin and behaviour of glaciers and the geological and geomorphological evidence for their past history on earth. The first part of the book investigates the processes involved in forming glacier ice, the nature of glacier-climate relationships, the mechanisms of glacier flow and the interactions of glaciers with other natural systems such as rivers, lakes and oceans. In the second part, the emphasis moves to landforms and sediment, the interpretation of the earth's glacial legacy and the reconstruction of glacial depositional environments and palaeoglaciology.
Past Glacial Environments, Second Edition, presents a revised and updated version of the very successful first edition of Menzies' book, covering a breadth of topics with a focus on the recognition and analysis of former glacial environments, including the pre-Quaternary glaciations. The book is made up of chapters written by various geological experts from across the world, with the editor's expertise and experience bringing the chapters together. This new and updated volume includes at least 45% new material, along with five new chapters that include a section on techniques and methods. Additionally, this new edition is presented in full color and features a large collection of photographs, line diagrams, and tables with examples of glacial environments and landscapes that are drawn from a worldwide perspective. Informative knowledge boxes and case studies are included, helping users better understand critical issues and ideas. - Provides the most complete reference concerning the study of glacial processes and their geological, sedimentological, and geomorphological products - Comprised of chapters written by various geological experts from across the world - Includes specific case studies to alert readers to important ideas and issues - Uses text boxes throughout to explain key concepts from glacial literature - Presents full color photographs, line diagrams, and tables throughout
Submarine mass movements represent major offshore geohazards due to their destructive and tsunami-generation potential. This potential poses a threat to human life as well as to coastal, nearshore and offshore engineering structures. Recent examples of catastrophic submarine landslide events that affected human populations (including tsunamis) are numerous; e.g., Nice airport in 1979, Papua-New Guinea in 1998, Stromboli in 2002, Finneidfjord in 1996, and the 2006 and 2009 failures in the submarine cable network around Taiwan. The Great East Japan Earthquake in March 2011 also generated submarine landslides that may have amplified effects of the devastating tsunami. Given that 30% of the World’s population live within 60 km of the coast, the hazard posed by submarine landslides is expected to grow as global sea level rises. This elevated awareness of the need for better understanding of submarine landslides is coupled with great advances in submarine mapping, sampling and monitoring technologies. Laboratory analogue and numerical modeling capabilities have also developed significantly of late. Multibeam sonar, 3D seismic reflection, and remote and autonomous underwater vehicle technologies provide hitherto unparalleled imagery of the geology beneath the oceans, permitting investigation of submarine landslide deposits in great detail. Increased and new access to drilling, coring, in situ measurements and monitoring devices allows for ground-thruth of geophysical data and provides access to samples for geotechnical laboratory experiments and information on in situ strength and effective stress conditions of underwater slopes susceptible to fail. Great advances in numerical simulation techniques of submarine landslide kinematics and tsunami propagation, particularly since the 2004 Sumatra tsunami, have also lead to increased understanding and predictability of submarine landslide consequences. This volume consists of the latest scientific research by international experts in geological, geophysical, engineering and environmental aspects of submarine mass failure, focused on understanding the full spectrum of challenges presented by submarine mass movements and their consequences.
The second revised edition of the Encyclopedia of Quaternary Science, Four Volume Set, provides both students and professionals with an up-to-date reference work on this important and highly varied area of research. There are lots of new articles, and many of the articles that appeared in the first edition have been updated to reflect advances in knowledge since 2006, when the original articles were written. The second edition will contain about 375 articles, written by leading experts around the world. This major reference work is richly illustrated with more than 3,000 illustrations, most of them in colour. Research in the Quaternary sciences has advanced greatly in the last 10 years, especially since topics like global climate change, geologic hazards and soil erosion were put high on the political agenda. This second edition builds upon its award-winning predecessor to provide the reader assured quality along with essential updated coverage Contains 357 broad-ranging articles (4310 pages) written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. Facilitates teaching and learning The first edition was regarded by many as the most significant single overview of Quaternary science ever, yet Editor-in-Chief, Scott Elias, has managed to surpass that in this second edition by securing even more expert reviews whilst retaining his renowned editorial consistency that enables readers to navigates seamlessly from one unfamiliar topic to the next