Getting Started with Google BERT

Getting Started with Google BERT

Author: Sudharsan Ravichandiran

Publisher: Packt Publishing Ltd

Published: 2021-01-22

Total Pages: 340

ISBN-13: 1838826238

DOWNLOAD EBOOK

Kickstart your NLP journey by exploring BERT and its variants such as ALBERT, RoBERTa, DistilBERT, VideoBERT, and more with Hugging Face's transformers library Key FeaturesExplore the encoder and decoder of the transformer modelBecome well-versed with BERT along with ALBERT, RoBERTa, and DistilBERTDiscover how to pre-train and fine-tune BERT models for several NLP tasksBook Description BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer’s encoder and decoder work. You’ll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you’ll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you’ll be well-versed with using BERT and its variants for performing practical NLP tasks. What you will learnUnderstand the transformer model from the ground upFind out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasksGet hands-on with BERT by learning to generate contextual word and sentence embeddingsFine-tune BERT for downstream tasksGet to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT modelsGet the hang of the BERT models based on knowledge distillationUnderstand cross-lingual models such as XLM and XLM-RExplore Sentence-BERT, VideoBERT, and BARTWho this book is for This book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.


Getting Started with Google BERT

Getting Started with Google BERT

Author: Sudharsan Ravichandiran

Publisher: Packt Publishing Ltd

Published: 2021-01-22

Total Pages: 340

ISBN-13: 1838826238

DOWNLOAD EBOOK

Kickstart your NLP journey by exploring BERT and its variants such as ALBERT, RoBERTa, DistilBERT, VideoBERT, and more with Hugging Face's transformers library Key FeaturesExplore the encoder and decoder of the transformer modelBecome well-versed with BERT along with ALBERT, RoBERTa, and DistilBERTDiscover how to pre-train and fine-tune BERT models for several NLP tasksBook Description BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer’s encoder and decoder work. You’ll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you’ll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you’ll be well-versed with using BERT and its variants for performing practical NLP tasks. What you will learnUnderstand the transformer model from the ground upFind out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasksGet hands-on with BERT by learning to generate contextual word and sentence embeddingsFine-tune BERT for downstream tasksGet to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT modelsGet the hang of the BERT models based on knowledge distillationUnderstand cross-lingual models such as XLM and XLM-RExplore Sentence-BERT, VideoBERT, and BARTWho this book is for This book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.


Exploring GPT-3

Exploring GPT-3

Author: Steve Tingiris

Publisher: Packt Publishing Ltd

Published: 2021-08-27

Total Pages: 296

ISBN-13: 1800565496

DOWNLOAD EBOOK

Get started with GPT-3 and the OpenAI API for natural language processing using JavaScript and Python Key FeaturesUnderstand the power of potential GPT-3 language models and the risks involvedExplore core GPT-3 use cases such as text generation, classification, and semantic search using engaging examplesPlan and prepare a GPT-3 application for the OpenAI review process required for publishing a live applicationBook Description Generative Pre-trained Transformer 3 (GPT-3) is a highly advanced language model from OpenAI that can generate written text that is virtually indistinguishable from text written by humans. Whether you have a technical or non-technical background, this book will help you understand and start working with GPT-3 and the OpenAI API. If you want to get hands-on with leveraging artificial intelligence for natural language processing (NLP) tasks, this easy-to-follow book will help you get started. Beginning with a high-level introduction to NLP and GPT-3, the book takes you through practical examples that show how to leverage the OpenAI API and GPT-3 for text generation, classification, and semantic search. You'll explore the capabilities of the OpenAI API and GPT-3 and find out which NLP use cases GPT-3 is best suited for. You'll also learn how to use the API and optimize requests for the best possible results. With examples focusing on the OpenAI Playground and easy-to-follow JavaScript and Python code samples, the book illustrates the possible applications of GPT-3 in production. By the end of this book, you'll understand the best use cases for GPT-3 and how to integrate the OpenAI API in your applications for a wide array of NLP tasks. What you will learnUnderstand what GPT-3 is and how it can be used for various NLP tasksGet a high-level introduction to GPT-3 and the OpenAI APIImplement JavaScript and Python code examples that call the OpenAI APIStructure GPT-3 prompts and options to get the best possible resultsSelect the right GPT-3 engine or model to optimize for speed and cost-efficiencyFind out which use cases would not be suitable for GPT-3Create a GPT-3-powered knowledge base application that follows OpenAI guidelinesWho this book is for Exploring GPT-3 is for anyone interested in natural language processing or learning GPT-3 with or without a technical background. Developers, product managers, entrepreneurs, and hobbyists looking to get to grips with NLP, AI, and GPT-3 will find this book useful. Basic computer skills are all you need to get the most out of this book.


Conversational AI with Rasa

Conversational AI with Rasa

Author: Xiaoquan Kong

Publisher: Packt Publishing Ltd

Published: 2021-10-08

Total Pages: 264

ISBN-13: 1801073880

DOWNLOAD EBOOK

Create next-level AI assistants and transform how customers communicate with businesses with the power of natural language understanding and dialogue management using Rasa Key FeaturesUnderstand the architecture and put the underlying principles of the Rasa framework to practiceLearn how to quickly build different types of chatbots such as task-oriented, FAQ-like, and knowledge graph-based chatbotsExplore best practices for working with Rasa and its debugging and optimizing aspectsBook Description The Rasa framework enables developers to create industrial-strength chatbots using state-of-the-art natural language processing (NLP) and machine learning technologies quickly, all in open source. Conversational AI with Rasa starts by showing you how the two main components at the heart of Rasa work – Rasa NLU (natural language understanding) and Rasa Core. You'll then learn how to build, configure, train, and serve different types of chatbots from scratch by using the Rasa ecosystem. As you advance, you'll use form-based dialogue management, work with the response selector for chitchat and FAQ-like dialogs, make use of knowledge base actions to answer questions for dynamic queries, and much more. Furthermore, you'll understand how to customize the Rasa framework, use conversation-driven development patterns and tools to develop chatbots, explore what your bot can do, and easily fix any mistakes it makes by using interactive learning. Finally, you'll get to grips with deploying the Rasa system to a production environment with high performance and high scalability and cover best practices for building an efficient and robust chat system. By the end of this book, you'll be able to build and deploy your own chatbots using Rasa, addressing the common pain points encountered in the chatbot life cycle. What you will learnUse the response selector to handle chitchat and FAQsCreate custom actions using the Rasa SDKTrain Rasa to handle complex named entity recognitionBecome skilled at building custom components in the Rasa frameworkValidate and test dialogs end to end in RasaDevelop and refine a chatbot system by using conversation-driven deployment processingUse TensorBoard for tuning to find the best configuration optionsDebug and optimize dialogue systems based on RasaWho this book is for This book is for NLP professionals as well as machine learning and deep learning practitioners who have knowledge of natural language processing and want to build chatbots with Rasa. Anyone with beginner-level knowledge of NLP and deep learning will be able to get the most out of the book.


Getting started with Deep Learning for Natural Language Processing

Getting started with Deep Learning for Natural Language Processing

Author: Sunil Patel

Publisher: BPB Publications

Published: 2021-01-13

Total Pages: 407

ISBN-13: 9389898110

DOWNLOAD EBOOK

Learn how to redesign NLP applications from scratch. KEY FEATURESÊÊ ¥ Get familiar with the basics of any Machine Learning or Deep Learning application. ¥ Understand how does preprocessing work in NLP pipeline. ¥ Use simple PyTorch snippets to create basic building blocks of the network commonly used inÊ NLP.Ê ¥ Learn how to build a complex NLP application. ¥ Get familiar with the advanced embedding technique, Generative network, and Audio signal processing techniques. ÊÊ DESCRIPTIONÊ Natural language processing (NLP) is one of the areas where many Machine Learning and Deep Learning techniques are applied. This book covers wide areas, including the fundamentals of Machine Learning, Understanding and optimizing Hyperparameters, Convolution Neural Networks (CNN), and Recurrent Neural Networks (RNN). This book not only covers the classical concept of text processing but also shares the recent advancements. This book will empower users in designing networks with the least computational and time complexity. This book not only covers basics of Natural Language Processing but also helps in deciphering the logic behind advanced concepts/architecture such as Batch Normalization, Position Embedding, DenseNet, Attention Mechanism, Highway Networks, Transformer models and Siamese Networks. This book also covers recent advancements such as ELMo-BiLM, SkipThought, and Bert. This book also covers practical implementation with step by step explanation of deep learning techniques in Topic Modelling, Text Generation, Named Entity Recognition, Text Summarization, and Language Translation. In addition to this, very advanced and open to research topics such as Generative Adversarial Network and Speech Processing are also covered. WHAT YOU WILL LEARNÊ ¥ Learn how to leveraging GPU for Deep Learning ¥ Learn how to use complex embedding models such as BERT ¥ Get familiar with the common NLP applications. ¥ Learn how to use GANs in NLP ¥ Learn how to process Speech data and implementing it in Speech applications Ê WHO THIS BOOK IS FORÊ This book is a must-read to everyone who wishes to start the career with Machine learning and Deep Learning. This book is also for those who want to use GPU for developing Deep Learning applications. TABLE OF CONTENTSÊÊ 1. Understanding the basics of learning Process 2. Text Processing Techniques 3. Representing Language Mathematically 4. Using RNN for NLP 5. Applying CNN In NLP Tasks 6. Accelerating NLP with Advanced Embeddings 7. Applying Deep Learning to NLP tasks 8. Application of Complex Architectures in NLP 9. Understanding Generative Networks 10. Techniques of Speech Processing 11. The Road Ahead


How to Get Started in STEM Research with Undergraduates

How to Get Started in STEM Research with Undergraduates

Author: Bert E. Holmes

Publisher: Council on Undergraduate Research

Published: 2019-06-01

Total Pages: 86

ISBN-13: 0941933040

DOWNLOAD EBOOK

Faculty members face unique challenges and issues in conducting successful research with undergraduates in STEM fields. How to Get Started in STEM Research with Undergraduates discusses ways to deal with issues such as setting up and managing a research laboratory, designing student research projects, working with administrators, seeking research grants, writing successful grant proposals, integrating research into the classroom, dealing with information management, and making optimal use of the primary literature. Designed for faculty in the early years of teaching, the publication also can assist administrators as they consider elements for research success and institutional expectations for faculty. The appendix lists research agencies that fund undergraduate research.


Machine Learning and Principles and Practice of Knowledge Discovery in Databases

Machine Learning and Principles and Practice of Knowledge Discovery in Databases

Author: Irena Koprinska

Publisher: Springer Nature

Published: 2023-01-30

Total Pages: 646

ISBN-13: 3031236181

DOWNLOAD EBOOK

This volume constitutes the papers of several workshops which were held in conjunction with the International Workshops of ECML PKDD 2022 on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022, held in Grenoble, France, during September 19–23, 2022. The 73 revised full papers and 6 short papers presented in this book were carefully reviewed and selected from 143 submissions. ECML PKDD 2022 presents the following workshops: Workshop on Data Science for Social Good (SoGood 2022) Workshop on New Frontiers in Mining Complex Patterns (NFMCP 2022) Workshop on Explainable Knowledge Discovery in Data Mining (XKDD 2022) Workshop on Uplift Modeling (UMOD 2022) Workshop on IoT, Edge and Mobile for Embedded Machine Learning (ITEM 2022) Workshop on Mining Data for Financial Application (MIDAS 2022) Workshop on Machine Learning for Cybersecurity (MLCS 2022) Workshop on Machine Learning for Buildings Energy Management (MLBEM 2022) Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2022) Workshop on Data Analysis in Life Science (DALS 2022) Workshop on IoT Streams for Predictive Maintenance (IoT-PdM 2022)


Machine Learning Interviews

Machine Learning Interviews

Author: Susan Shu Chang

Publisher: "O'Reilly Media, Inc."

Published: 2023-11-29

Total Pages: 310

ISBN-13: 1098146514

DOWNLOAD EBOOK

As tech products become more prevalent today, the demand for machine learning professionals continues to grow. But the responsibilities and skill sets required of ML professionals still vary drastically from company to company, making the interview process difficult to predict. In this guide, data science leader Susan Shu Chang shows you how to tackle the ML hiring process. Having served as principal data scientist in several companies, Chang has considerable experience as both ML interviewer and interviewee. She'll take you through the highly selective recruitment process by sharing hard-won lessons she learned along the way. You'll quickly understand how to successfully navigate your way through typical ML interviews. This guide shows you how to: Explore various machine learning roles, including ML engineer, applied scientist, data scientist, and other positions Assess your interests and skills before deciding which ML role(s) to pursue Evaluate your current skills and close any gaps that may prevent you from succeeding in the interview process Acquire the skill set necessary for each machine learning role Ace ML interview topics, including coding assessments, statistics and machine learning theory, and behavioral questions Prepare for interviews in statistics and machine learning theory by studying common interview questions